Ancion P-Y, Lear G, Lewis GD (2010) Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities. Environ Pollut 158(8):2738–2745. https://doi.org/10.1016/j.envpol.2010.04.013
CAS
Article
Google Scholar
Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94. https://doi.org/10.3390/ijerph14010094
CAS
Article
Google Scholar
National Research Council (2009) Science and decisions: advancing risk assessment. The National Academies Press, Washington, DC
Google Scholar
Bone AJ, Colman BP, Gondikas AP, Newton KM, Harrold KH, Cory RM, Unrine JM, Klaine SJ, Matson CW, Di Giulio RT (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2–toxicity and Ag speciation. Environ Sci Technol 46(13):6925–6933. https://doi.org/10.1021/es204683m
CAS
Article
Google Scholar
Cardoso PG, Marques SC, D’Ambrosio M, Pereira E, Duarte AC, Azeiteiro UM, Pardal MÂ (2013) Changes in zooplankton communities along a mercury contamination gradient in a coastal lagoon (Ria de Aveiro, Portugal). Mar Pollut Bull 76(1):170–177. https://doi.org/10.1016/j.marpolbul.2013.09.007
CAS
Article
Google Scholar
Chang WC, Hsu GS, Chiang SM, Su MC (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresour Technol 97(13):1503–1508. https://doi.org/10.1016/j.biortech.2005.06.011
CAS
Article
Google Scholar
Chen CY, Stemberger RS, Klaue B, Blum JD, Pickhardt PC, Folt CL (2000) Accumulation of heavy metals in food web components across a gradient of lakes. Limnol Oceanogr 45(7):1525–1536. https://doi.org/10.4319/lo.2000.45.7.1525
CAS
Article
Google Scholar
OECD (2012) Test No. 211: daphnia magna reproduction test OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris
Google Scholar
Conley JM, Funk DH, Buchwalter DB (2009) Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environ Sci Technol 43(20):7952–7957. https://doi.org/10.1021/es9016377
CAS
Article
Google Scholar
Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20(10):1257–1273. https://doi.org/10.1016/S0278-4343(00)00022-4
Article
Google Scholar
Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Singh B, Rai J, Sharma P, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212. https://doi.org/10.3390/su7022189
CAS
Article
Google Scholar
OECD (1992) Test No. 203: fish, acute toxicity test OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris
Google Scholar
R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Google Scholar
Dranguet P, Faucheur SL, Slaveykova VI (2017) Mercury bioavailability, transformations, and effects on freshwater biofilms. Environ Toxicol Chem 9999:1–12. https://doi.org/10.1002/etc.3934
CAS
Article
Google Scholar
Eckert EM, Pernthaler J (2014) Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME 8(9):1808–1819. https://doi.org/10.1038/ismej.2014.39
CAS
Article
Google Scholar
UNEP (2013) Global mercury assessment 2013: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland
Google Scholar
Fan TWM, Teh SJ, Hinton DE, Higashi RM (2002) Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California. Aquat Toxicol 57(1):65–84. https://doi.org/10.1016/S0166-445X(01)00261-2
CAS
Article
Google Scholar
Goto N, Mitamura O, Terai H (2001) Biodegradation of photosynthetically produced extracellular organic carbon from intertidal benthic algae. J Exp Mar Biol Ecol 257(1):73–86. https://doi.org/10.1016/S0022-0981(00)00329-4
CAS
Article
Google Scholar
Guan R, Wang W-X (2004) Dietary assimilation and elimination of Cd, Se, and Zn by Daphnia magna at different metal concentrations. Environ Toxicol Chem 23(11):2689–2698. https://doi.org/10.1897/03-503
CAS
Article
Google Scholar
Hill WR, Larsen IL (2005) Growth dilution of metals in microalgal biofilms. Environ Sci Technol 39(6):1513–1518. https://doi.org/10.1021/es049587y
CAS
Article
Google Scholar
Holmstrup M, Bindesbøl A-M, Oostingh GJ, Duschl A, Scheil V, Köhler H-R, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408(18):3746–3762. https://doi.org/10.1016/j.scitotenv.2009.10.067
CAS
Article
Google Scholar
Huws SA, McBain AJ, Gilbert P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98(1):238–244. https://doi.org/10.1111/j.1365-2672.2004.02449.x
CAS
Article
Google Scholar
Janz DM, Liber K, Pickering IJ, Wiramanaden CIE, Weech SA, Gallego-Gallegos M, Driessnack MK, Franz ED, Goertzen MM, Phibbs J, Tse JJ, Himbeault KT, Robertson EL, Burnett-Seidel C, England K, Gent A (2014) Integrative assessment of selenium speciation, biogeochemistry, and distribution in a northern coldwater ecosystem. Integr Environ Assess Manag 10(4):543–554. https://doi.org/10.1002/ieam.1560
CAS
Article
Google Scholar
OECD (2004) Test No. 202: daphnia sp. acute immobilisation test OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris
Google Scholar
Kagami M, Donk EV, De Bruin A, Rijkeboer M, Ibelings BW (2004) Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr 49(3):680–685
Klüttgen B, Dülmer U, Engels M, Ratte HT (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28:743–746
Article
Google Scholar
Kohušová K, Havel L, Vlasák P, Tonika J (2011) A long-term survey of heavy metals and specific organic compounds in biofilms, sediments, and surface water in a heavily affected river in the Czech Republic. Environ Monit Assess 174:555–572. https://doi.org/10.1007/s10661-010-1478-4
CAS
Article
Google Scholar
Kühl M, Glud RN, Ploug H, Ramsing NB (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32(5):799–812. https://doi.org/10.1111/j.0022-3646.1996.00799.x
Article
Google Scholar
De Laender F, De Schamphelaere KAC, Vanrolleghem PA, Janssen CR (2008) Do we have to incorporate ecological interactions in the sensitivity assessment of ecosystems? An examination of a theoretical assumption underlying species sensitivity distribution models. Environ Int 34(3):390–396. https://doi.org/10.1016/j.envint.2007.09.006
CAS
Article
Google Scholar
Leguay S, Lavoie I, Levy JL, Fortin C (2016) Using biofilms for monitoring metal contamination in lotic ecosystems: the protective effects of hardness and pH on metal bioaccumulation. Environ Toxicol Chem 35(6):1489–1501. https://doi.org/10.1002/etc.3292
CAS
Article
Google Scholar
Nichols JW, Ambrose RB Jr, Cubbison C, Fairbrother A, Keating MH, Mahaffey KR, Mukerjee D, Rice GE, Reisman DJ, Schoeny R, Swartout J, Troyer M (1997) Mercury study report to congress. Volume VI: an ecological assessment for anthropogenic mercury emissions in the United States EPA-452/R-97-008. U.S. EPA Office of Air Quality Planning and Standards and Office of Research and Development, Washington, DC
Peterson SA, Ralston NVC, Whanger PD, Oldfield JE, Mosher WD (2009) Selenium and mercury interactions with emphasis on fish tissue. Environ Bioindic 4:318–334. https://doi.org/10.1080/15555270903358428
CAS
Article
Google Scholar
Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD (2002) Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc Natl Acad Sci 99(7):4419–4423. https://doi.org/10.1073/pnas.072531099
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2018) nlme: linear and nonlinear mixed effects models (Version R package version 3.1-131.1). https://CRAN.R-project.org/package=nlme
Poste AE, Muir DCG, Guildford SJ, Hecky RE (2015) Bioaccumulation and biomagnification of mercury in African lakes: the importance of trophic status. Sci Total Environ 506-507:126–136. https://doi.org/10.1016/j.scitotenv.2014.10.094
CAS
Article
Google Scholar
Ranjard L, Nazaret S, Cournoyer B (2003) Freshwater bacteria can methylate selenium through the thiopurine methyltransferase pathway. Appl Environ Microbiol 69(7):3784–3790. https://doi.org/10.1128/AEM.69.7.3784-3790.2003
CAS
Article
Google Scholar
Rathore RS, Khangarot BS (2003) Effects of water hardness and metal concentration on a freshwater Tubifex Tubifex Muller. Water, Air, Soil Pollut 142(1):341–356. https://doi.org/10.1023/a:1022016021081
CAS
Article
Google Scholar
Rikard FS, Walton WC (2012) Use of microalgae concentrates for rearing oyster larvae, Crassostrea virginica. Mississippi–Alabama Sea Grant Publication No.: MASGP-12-048
Samczyński Z, Dybczyński RS, Polkowska-Motrenko H, Chajduk E, Pyszynska M, Danko B, Czerska E, Kulisa K, Doner K, Kalbarczyk P (2012) Two new reference materials based on tobacco leaves: certification for over a dozen of toxic and essential elements. Sci World J. https://doi.org/10.1100/2012/216380
Sandholm M, Oksanen HE, Pesonen L (1973) Uptake of selenium by aquatic organisms. Limnol Oceanogr 18(3):496–499. https://doi.org/10.4319/lo.1973.18.3.0496
CAS
Article
Google Scholar
Shaw JR, Pfrender ME, Eads BD, Klaper R, Callaghan A, Sibly RM, Colson I, Jansen B, Gilbert D, Colbourne JK (2008) Daphnia as an emerging model for toxicological genomics. Adv Exp Biol 2:165–219. https://doi.org/10.1016/S1872-2423(08)00005-7
CAS
Article
Google Scholar
Siehoff S, Hammers-wirtz M, Strauss T, Toni H (2009) Periphyton as alternative food source for the filter-feeding cladoceran Daphnia magna. Freshw Biol 54:15–23. https://doi.org/10.1111/j.1365-2427.2008.02087.x
Article
Google Scholar
Søndergaard M, Hansen B, Markager S (1995) Dynamics of dissolved organic carbon lability in a eutrophic lake. Limnol Oceanogr 40(1):46–54. https://doi.org/10.4319/lo.1995.40.1.0046
Article
Google Scholar
Stewart AR, Luoma SN, Schlekat CE, Doblin MA, Hieb KA (2004) Food web pathway determines how selenium affects aquatic ecosystems: a San Francisco Bay case study. Environ Sci Technol 38(17):4519–4526. https://doi.org/10.1021/es0499647
CAS
Article
Google Scholar
Tsui MTK, Wang W-X (2004) Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna. Environ Sci Technol 38(3):808–816. https://doi.org/10.1021/es034638x
Tuzen M, Sarı A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies. Chem Eng J 158(2):200–206. https://doi.org/10.1016/j.cej.2009.12.041
CAS
Article
Google Scholar
Viaene KPJ, De Laender F, Rico A, Van den Brink PJ, Di Guardo A, Morselli M, Janssen CR (2015) Species interactions and chemical stress: combined effects of intraspecific and interspecific interactions and pyrene on Daphnia magna population dynamics. Environ Toxicol Chem 34(8):1751–1759. https://doi.org/10.1002/etc.2973
CAS
Article
Google Scholar
Wang R, Wang W-X (2010) Importance of speciation in understanding mercury bioaccumulation in tilapia controlled by salinity and dissolved organic matter. Environ Sci Technol 44(20):7964–7969. https://doi.org/10.1021/es1011274
CAS
Article
Google Scholar
Wetzel RG (1993) Microcommunities and microgradients: linking nutrient regeneration, microbial mutualism, and high sustained aquatic primary production. Neth J Aquat Ecol 27(1):3–9. https://doi.org/10.1007/bf02336924
Article
Google Scholar
Yang D-Y, Chen Y-W, Gunn JM, Belzile N (2008) Selenium and mercury in organisms: interactions and mechanisms. Environ Rev 16:71–92. https://doi.org/10.1139/A08-001
CAS
Article
Google Scholar
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York, NY
Book
Google Scholar