Skip to main content
Log in

Sublethal effects of insecticide seed treatments on two nearctic lady beetles (Coleoptera: Coccinellidae)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Predatory insects often feed on plants or use plant products to supplement their diet, creating a potential route of exposure to systemic insecticides used as seed treatments. This study examined whether chlorantraniliprole or thiamethoxam might negatively impact Coleomegilla maculata and Hippodamia convergens when the beetles consumed the extrafloral nectar of sunflowers grown from treated seed. We reared both species on eggs of Ephestia kuehniella and then switched adult H. convergens to a diet of greenbugs, Schizaphis graminum, in order to induce oviposition in this species. Excised sunflower stems, either treated or control and refreshed every 48 h, were provided throughout larval development, or for the first week of adult life. Exposure of C. maculata larvae to chlorantraniliprole and thiamethoxam applied as seed treatments delayed adult emergence by prolonging the pupal period. When adults were exposed, thiamethoxam reduced the preoviposition period compared to chlorantraniliprole, whereas the latter treatment cause females to produce fewer clutches during the observation period. Larvae of C. maculata did not appear to obtain sufficient hydration from the sunflower stems and their subsequent fecundity and fertility were compromised in comparison to the adult exposure experiment where larvae received supplemental water during development. Exposure of H. convergens larvae to thiamethoxam skewed the sex ratio in favor of females; both materials reduced the egg viability of resulting adults and increased the period required for eclosion. Exposure of H. convergens adults to chlorantraniliprole reduced egg eclosion times compared to thiamethoxam and exposure to both insecticides reduced pupation times in progeny. The results indicate that both insecticides have negative, sublethal impacts on the biology of these predators when they feed on extrafloral nectar of sunflower plants grown from treated seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker I, Baker HG (1979) Chemical constituents of the nectars of two Erythrina species and their hybrid. Ann Missouri Bot Gard 66:446–450

    Article  Google Scholar 

  • Benzidane Y, Touinsi S, Motte E, Jadas-Hecart A, Communal PY, Leduc L, Thany SH (2010) Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin. Pest Manag Sci 66:1351–1359

    Article  CAS  Google Scholar 

  • Biondi A, Desneux N, Siscaro G, Zappala L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

    Article  CAS  Google Scholar 

  • Castro AA, Correa AS, Legaspi JC, Guedes RN, Serrao JE, Zanuncio JC (2013) Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere 93:1043–1050

    Article  Google Scholar 

  • Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP (2014) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res Int. doi:10.1007/s11356-014-3277-x

    Google Scholar 

  • Charlet LD, Gavloski J (2011) Insects of sunflower in the Northern Great Plains of North America. In: Floate KD (ed.) Arthropods of Canadian grasslands: inhabitants of a changing landscape. Biological Survey of Canada, pp 159–178

  • Choate BA, Lundgren JG (2013) Why eat extrafloral nectar? Understanding food selection by Coleomegilla maculata (Coleoptera: Coccinellidae). Biocontrol 58:359–367

    Article  Google Scholar 

  • Cloyd RA, Bethke JA (2011) Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Manag Sci 67:3–9

    Article  CAS  Google Scholar 

  • Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47:267–297

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • FAO (2008) Food and Agriculture Organization of the United Nations. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report08/Chlorantraniliprole.pdf

  • Fogel MN, Schneider MI, Desneux N, Gonzalez B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071

    Article  CAS  Google Scholar 

  • Frewin AJ, Schaafsma AW, Hallett RH (2014) Susceptibility of Aphelinus certus (Hymenoptera: Aphelinidae) to neonicotinoid seed treatments used for soybean pest management. J Econ Entomol 107:1450–1457

    Article  Google Scholar 

  • Gontijo PC, Moscardini VF, Michaud JP, Carvalho GA (2014a) Non-target effects of two sunflower seed treatments on Orius insidiosus (Hemiptera: Anthocoridae). Pest Manag Sci. doi:10.1002/ps.3798

    Google Scholar 

  • Gontijo PC, Moscardini VF, Michaud JP, Carvalho GA (2014b) Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. J Pest Sci 87:711–719

    Article  Google Scholar 

  • Guo L, Desneux N, Sonoda S, Liang P, Han P, Gao X-W (2013) Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L. Crop Prot 48:29–34

    Article  CAS  Google Scholar 

  • Hannig GT, Ziegler M, Marcon PG (2009) Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Pest Manag Sci 65:969–974

    Article  CAS  Google Scholar 

  • He Y, Zhao J, Zheng Y, Desneux N, Wu K (2012) Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 21:1291–1300

    Article  CAS  Google Scholar 

  • Head R, Neel WW, Sartor CR, Chambers H (1977) Methyl parathion and carbaryl resistance in Chrysomela scripta and Coleomegilla maculate. Bull Environ ContamToxicol 17:163–164

    Article  CAS  Google Scholar 

  • Hodek I, Evans EW (2012) Food relationships. In: Hodek I, van Emden HF, Honek A (eds) Ecology and Behavior of the Ladybird Beetles. Wiley-Blackwell, Oxford, pp 141–274

    Chapter  Google Scholar 

  • Hodgson EW, Kemis M, Geisinger B (2012) Assessment of Iowa growers for insect pest management practices. J Ext 50:RIB6

    Google Scholar 

  • Hummel NA, Meszaros A, Ring DR, Beuzelin JM, Stout MJ (2014) Evaluation of seed treatment insecticides for management of the rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), in commercial rice fields in Louisiana. Crop Prot 65:37–42

    Article  CAS  Google Scholar 

  • Institute SAS (2008) SAS for Windows Version 90 SAS Institute. SAS Institute, Cary

    Google Scholar 

  • Krischik VA, Landmark AL, Heimpel GE (2007) Soil-applied imidacloprid is translocated to nectar and kills nectar-feeding Anagyrus pseudococci (Girault) (Hymenoptera: Encyrtidae). Environ Entomol 36:1238–1245

    Article  CAS  Google Scholar 

  • Lahm GP, Stevenson TM, Selby TP, Freudenberger JH, Cordova D, Flexner L, Bellin CA, Dubas CM, Smith BK, Hughes KA, Hollingshaus JG, Clark CE, Benner EA (2007) Rynaxypyr: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorg Med Chem Lett 17:6274–6279

    Article  CAS  Google Scholar 

  • Lahm GP, Cordova D, Barry JD (2009) New and selective ryanodine receptor activators for insect control. Bioorgan Med Chem 17:4127–4133

    Article  CAS  Google Scholar 

  • Lai T, Su J (2011) Effects of chlorantraniliprole on development and reproduction of beet armyworm, Spodoptera exigua (Hubner). J Pest Sci 84:381–386

    Article  Google Scholar 

  • Li X, Degain BA, Harpold VS, Marcon PG, Nichols RL, Fournier AJ, Naranjo SE, Palumbo JC, Ellsworth PC (2012) Baseline susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides in Arizona. Pest Manag Sci 68:83–91

    Article  CAS  Google Scholar 

  • Liang P, Tian Y-A, Biondi A, Desneux N, Gao X-W (2012) Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21:1889–1898

    Article  CAS  Google Scholar 

  • Liu F, Bao SW, Song Y, Lu HY, Xu JX (2010) Effects of imidacloprid on the orientation behavior and parasitizing capacity of Anagrus nilaparvatae, an egg parasitoid of Nilaparvata lugens. Biocontrol 55:473–483

    Article  CAS  Google Scholar 

  • Liu F, Zhang X, Gui Q-Q, Xu Q-J (2012) Sublethal effects of four insecticides on Anagrus nilaparvatae (Hymenoptera: Mymaridae), an important egg parasitoid of the rice planthopper Nilaparvata lugens (Homoptera: Delphacidae). Crop Prot 37:13–19

    Article  Google Scholar 

  • Lundgren JG (2009a) Relationships of natural enemies and non-prey foods. Springer International, Dordrecht

    Google Scholar 

  • Lundgren JG (2009b) Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol Control 5:294–305

    Article  Google Scholar 

  • Lundgren JG, Seagraves MP (2011) Physiological benefits of nectar feeding by a predatory beetle. Biol J Linn Soc 104:661–669

    Article  Google Scholar 

  • Maienfisch P, Angst M, Brandl F, Fischer W, Hofer D, Kayser H, Kobel W, Rindlisbacher A, Senn R, Steinemann A, Hr Widmer (2001) Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest Manag Sci 57:901–913

    Google Scholar 

  • Marazzi B, Bronstein JL, Koptur S (2013) The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. Ann Bot 111:1243–1250

    Article  Google Scholar 

  • Martinou AF, Seraphides N, Stavrinides MC (2014) Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere 96:167–173

    Article  CAS  Google Scholar 

  • Michaud JP (2013) Coccinellids in biological control. In: Hodek I, van Emden HF, Honek A (eds) Ecology and behaviour of the ladybird beetles. Wiley-Blackwell, Oxford, pp 488–519

    Google Scholar 

  • Michaud JP, Grant AK (2005) Suitability of pollen sources for the development and reproduction of Coleomegilla maculata (Coleoptera: Coccinellidae) under simulated drought conditions. Biol Control 32:363–370

    Article  Google Scholar 

  • Michaud JP, Qureshi JA (2005) Induction of reproductive diapause in Hippodamia convergens (Coleoptera: Coccinellidae) hinges on prey quality and availability. Eur J Entomol 102:483–487

    Article  Google Scholar 

  • Michaud JP, Qureshi JA (2006) Reproductive diapause in Hippodamia convergens (Coleoptera: Coccinellidae) and its life history consequences. Biol Control 39:193–200

    Article  Google Scholar 

  • Moscardini VF, Gontijo PC, Michaud JP, Carvalho GA (2014) Sublethal effects of chlorantraniliprole and thiamethoxam seed treatments when Lysiphlebus testaceipes feed on sunflower extrafloral nectar. Biocontrol 59:503–511

    Article  CAS  Google Scholar 

  • Moser SE, Obrycki JJ (2009) Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy. Biol Control 51:487–492

    Article  Google Scholar 

  • Nauen R, Ebbinghaus-Kintscher U, Salgado VL, Kaussmann M (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic Biochem Phys 76:55–69

    Article  CAS  Google Scholar 

  • Nechols JR, Harvey TL (1998) Evaluation of a mechanical exclusion method to assess the impact of Russian wheat aphid natural enemies. In: Quisenberry SS, Peairs FP (eds) Response model for an introduced pest—the Russian wheat aphid. Thomas Say Publications, Lanham, pp 270–279

    Google Scholar 

  • Nuyttens D, Devarrewaere W, Verboven P, Foque D (2013) Pesticide-laden dust emission and drift from treated seeds during seed drilling: a review. Pest Manag Sci 69:564–575

    Article  CAS  Google Scholar 

  • Pacini E, Nepi M, Vesprini JL (2003) Nectar biodiversity: a short review. Plant Syst Evol 238:7–21

    CAS  Google Scholar 

  • Pemberton RW, Vandenberg NJ (1993) Extrafloral nectar feeding by ladybird beetles (Coleoptera: Coccinellidae). P Entomol Soc Wash 95:139–151

    Google Scholar 

  • Pereira RR, Picanço MC, Santana PA Jr, Moreira SS, Guedes RNC, Corrêa AS (2014) Insecticide toxicity and walking response of three pirate bug predators of the tomato leaf miner Tuta absoluta. Agric For Entomol 16:293–301. doi:10.1111/afe.12059

    Article  Google Scholar 

  • Reisig DD, Herbert DA, Malone S (2012) Impact of neonicotinoid seed treatments on thrips (Thysanoptera: Thripidae) and soybean yield in Virginia and North Carolina. J Econ Entomol 105:884–889

    Article  CAS  Google Scholar 

  • Rice ME, Wilde GE (1988) Experimental evaluation of predators and parasitoids in suppressing greenbugs (Homoptera: Aphididae) in sorghum and wheat. Environ Entomol 17:836–841

    Article  Google Scholar 

  • Rodrigues ARS, Ruberson JR, Torres JB, Siqueira HÁA, Scott JG (2013a) Pyrethroid resistance and its inheritance in a field population of Hippodamia convergens (Guérin-Méneville) (Coleoptera: Coccinellidae). Pestic Biochem Phys 105:135–143

    Article  CAS  Google Scholar 

  • Rodrigues ARS, Spindola AF, Torres JB, Siqueira HA, Colares F (2013b) Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance. Ecotoxicol Environ Saf 96:53–60

    Article  CAS  Google Scholar 

  • Rogers CE (1985) Extrafloral nectar: entomological implications. Bull Entomol Soc Am 31:15–20

    Google Scholar 

  • Rogers MA, Krischik VA, Martin LA (2007) Effect of soil application of imidacloprid on survival of adult green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), used for biological control in greenhouse. Biol Control 42:172–177

    Article  CAS  Google Scholar 

  • Rose USR, Lewis J, Tumlinson JH (2006) Extrafloral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Funct Ecol 20:67–74

    Article  Google Scholar 

  • Royer TA, Walgenbach DD (1991) Predacious arthropods of cultivated sunflower in eastern South Dakota. J Kansas Entomol Soc 64:112–116

    Google Scholar 

  • Royer TA, Giles KL, Nyamanzi T, Hunger RM, Krenzer EG, Elliott NC, Kindler SD, Payton M (2005) Economic evaluation of the effects of planting date and application rate of imidacloprid for management of cereal aphids and barley yellow dwarf in winter wheat. J Econ Entomol 98:95–102

    Article  CAS  Google Scholar 

  • Ruberson JR, Roberts P, Michaud JP (2007) Pyrethroid resistance in Georgia populations of the predator Hippodamia convergens (Coleoptera: Coccinellidae). Proc Beltwide Cotton Conf 1:361–365

    Google Scholar 

  • Seagraves MP, Lundgren JG (2012) Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies. J Pest Sci 85:125–132

    Article  Google Scholar 

  • Smagghe G, Deknopper J, Meeus I, Mommaerts V (2013) Dietary chlorantraniliprole suppresses reproduction in worker bumblebees. Pest Manag Sci 69:787–791

    Article  CAS  Google Scholar 

  • Smith SF, Krischik VA (1999) Effects of systemic imidacloprid on Coleomegilla maculata (Coleoptera: Coccinellidae). Environ Entomol 28:1189–1195

    Article  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol 45:247–268

    Article  CAS  Google Scholar 

  • van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin J-M, Belzunces LP (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305

    Article  Google Scholar 

  • van der Sluijs JP, Amaral-Rogers V, Belzunces LP, Lexmond MFIJBv, Bonmatin J-M, Chagnon M, Downs CA, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Simon-Delso N, Stark JD, Tapparo A, Dyck HV, Praagh Jv, Whitehorn PR, Wiemers M (2015) Conclusions of the worldwide integrated assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ Sci Pollut Res 22(1):148–154. doi:10.1007/s11356-014-3229-5

    Article  Google Scholar 

  • Vargas G, Michaud JP, Nechols JR (2013) Trajectories of reproductive effort in Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae) respond to variation in both income and capital. Environ Entomol 42:341–353

    Article  Google Scholar 

  • Vernon RS, Herk WG, Clodius M, Harding C (2011) Crop protection and mortality of Agriotes obscurus wireworms with blended insecticidal wheat seed treatments. J Pest Sci 86:137–150

    Article  Google Scholar 

  • Wackers FL, Romeis J, van Rijn P (2007) Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu Rev Entomol 52:301–323

    Article  CAS  Google Scholar 

  • Wilde G, Roozeboom K, Ahmad A, Claassen M, Gordon B, Heer W, Maddux L, Martin V, Evans P, Kofoid K, Long J, Schlegel A, Witt M (2007) Seed treatment effects on early season pests of corn and corn growth and yield in the absence of agricultural pests. J Agric Urban Entomol 24:177–193

    Article  CAS  Google Scholar 

  • Williamson SM, Willis SJ, Wright GA (2014) Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology 23:1409–1418

    Article  CAS  Google Scholar 

  • Yu C, Lin R, Fu M, Zhou Y, Zong F, Jiang H, Lv N, Piao X, Zhang J, Liu Y, Brock TCM (2014) Impact of imidacloprid on life-cycle development of Coccinella septempunctata in laboratory microcosms. Ecotox Environ Saf 110:168–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the CAPES Foundation (Brazilian Ministry of Education), the National Council of Scientific and Technological Development (CNPq), and the Minas Gerais State Foundation for Research Aid (FAPEMIG) for scholarship support from CAPES—No. 3362-13-2 (VFM) and CAPES—No. 3363-13-9 (PCG). Voucher specimens are deposited under voucher number 230 in the KSU Museum of Entomological and Prairie Arthropod Research. This is Contribution No. 15-260-J of the Kansas State Experiment Station.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Michaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moscardini, V.F., Gontijo, P.C., Michaud, J.P. et al. Sublethal effects of insecticide seed treatments on two nearctic lady beetles (Coleoptera: Coccinellidae). Ecotoxicology 24, 1152–1161 (2015). https://doi.org/10.1007/s10646-015-1462-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1462-4

Keywords

Navigation