Skip to main content

Advertisement

Log in

Distribution patterns of ammonia-oxidizing bacteria and anammox bacteria in the freshwater marsh of Honghe wetland in Northeast China

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Community characteristics of aerobic ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria in Honghe freshwater marsh, a Ramsar-designated wetland in Northeast China, were analyzed in this study. Samples were collected from surface and low layers of sediments in the Experimental, Buffer, and Core Zones in the reserve. Community structures of AOB were investigated using both 16S rRNA and amoA (encoding for the α-subunit of the ammonia monooxygenase) genes. Majority of both 16S rRNA and amoA gene-PCR amplified sequences obtained from the samples in the three zones affiliated with Nitrosospira, which agreed with other wetland studies. A relatively high richness of β-AOB amoA gene detected in the freshwater marsh might suggest minimal external pressure was experienced, providing a suitable habitat for β-AOB communities. Anammox bacteria communities were assessed using both 16S rRNA and hzo (encoding for hydrazine oxidoreductase) genes. However, PCR amplification of the hzo gene in all samples failed, suggesting that the utilization of hzo biomarker for detecting anammox bacteria in freshwater marsh might have serious limitations. Results with 16S rRNA gene showed that Candidatus Kuenenia was detected in only the Experimental Zone, whereas Ca. Scalindua including different lineages was observed in both the Buffer and Experimental Zones but not the Core Zone. These results indicated that both AOB and anammox bacteria have specific distribution patterns in the ecosystem corresponding to the extent of anthropogenic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avrahami S, Conrad R, Braker G (2002) Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl Environ Microbiol 68:5685–5692. doi:10.1128/aem.68.11.5685-5692.2002

    Article  CAS  Google Scholar 

  • Bastviken SK, Eriksson PG, Martins I, Neto JM, Leonardson L, Tonderski K (2003) Potential nitrification and denitrification on different surfaces in a constructed treatment wetland. J Environ Qual 32:2414–2420

    Article  CAS  Google Scholar 

  • Birol E, Karousakis K, Koundouri P (2006) Using a choice experiment to account for preference heterogeneity in wetland attributes: the case of Cheimaditida wetland in Greece. Ecol Econ 60:145–156

    Article  Google Scholar 

  • Cao H, Hong Y, Li M, Gu J-D (2012) Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl Microbiol Biotechnol 94:247–259. doi:10.1007/s00253-011-3636-1

    Article  CAS  Google Scholar 

  • Cao H, Auguet J-C, Gu J-D (2013) Global ecological pattern of ammonia-oxidizing archaea. PLoS ONE 8:e52853

    Article  CAS  Google Scholar 

  • Cébron A, Berthe T, Garnier J (2003) Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Appl Environ Microbiol 69:7091–7100

    Article  Google Scholar 

  • Chun J, Lee J-H, Jung Y, Kim M, Kim S, Kim BK, Lim Y-W (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  Google Scholar 

  • Coci M, Bodelier PLE, Laanbroek HJ (2008) Epiphyton as a niche for ammonia-oxidizing bacteria: detailed comparison with benthic and pelagic compartments in shallow freshwater lakes. Appl Environ Microbiol 74:1963–1971. doi:10.1128/aem.00694-07

    Article  CAS  Google Scholar 

  • Dale OR, Tobias CR, Song B (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear river estuary. Environ Microbiol 11:1194–1207

    Article  CAS  Google Scholar 

  • Dang H, Zhang X, Sun J, Li T, Zhang Z, Yang G (2008) Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology 154:2084–2095. doi:10.1099/mic.0.2007/013581-0

    Article  CAS  Google Scholar 

  • Dorador C, Busekow A, Vila I, Imhoff JF, Witzel K-P (2008) Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile. Extremophiles 12:405–414

    Article  CAS  Google Scholar 

  • Dymock D, Weightman A, Scully C, Wade W (1996) Molecular analysis of microflora associated with dentoalveolar abscesses. J Clin Microbiol 34:537–542

    CAS  Google Scholar 

  • Erler DV, Eyre BD, Davison L (2008) The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland. Environ Sci Technol 42:9144–9150

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Frankland PF, Frankland GC (1890) The nitrifying process and its specific ferment. Part I. Philosophical transactions of the Royal Society of London(B) 181:107–128

    Article  Google Scholar 

  • Galán A, Molina V, Thamdrup B, Woebken D, Lavik G, Kuypers MM, Ulloa O (2009) Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile. Deep Sea Res Part II 56:1021–1031

    Article  Google Scholar 

  • Gopal B, Ghosh D (2008) Natural wetlands. In: Sven Erik J, Brian F (eds) Encyclopedia of Ecology, Vol 1. Academic Press, Oxford, pp 2493–2504

  • Han P, Gu J-D (2013) More refined diversity of anammox bacteria recovered and distribution in different ecosystems. Appl Microbiol Biotechnol 97:3653–3663

    Article  CAS  Google Scholar 

  • Han P, Li M, Gu J-D (2013a) Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil. Appl Microbiol Biotechnol 97:8741–8756

    Article  CAS  Google Scholar 

  • Han P, Huang Y-T, Lin J-G, Gu J-D (2013b) A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples. Appl Microbiol Biotechnol 97(24):10521–10529. doi:10.1007/s00253-013-5305-z

    Article  CAS  Google Scholar 

  • Harhangi HR et al (2012) Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl Environ Microbiol 78:752–758. doi:10.1128/aem.07113-11

    Article  CAS  Google Scholar 

  • Hernández M, Dumont MG, Calabi M, Basualto D, Conrad R (2014) Ammonia oxidizers are pioneer microorganisms in the colonization of new acidic volcanic soils from South of Chile. Environ Microbiol Rep 6:70–79. doi:10.1111/1758-2229.12109

    Article  Google Scholar 

  • Herrmann M, Saunders AM, Schramm A (2008) Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl Environ Microbiol 74:3279–3283. doi:10.1128/aem.02802-07

    Article  CAS  Google Scholar 

  • Herrmann M, Saunders AM, Schramm A (2009) Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Appl Environ Microbiol 75:3127–3136. doi:10.1128/aem.02806-08

    Article  CAS  Google Scholar 

  • Hovanec TA, DeLong EF (1996) Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl Environ Microbiol 62:2888–2896

    CAS  Google Scholar 

  • Humbert S, Tarnawski S, Fromin N, Mallet M-P, Aragno M, Zopfi J (2009) Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J 4:450–454

    Article  Google Scholar 

  • Humbert S, Zopfi J, Tarnawski S-E (2012) Abundance of anammox bacteria in different wetland soils. Environ Microbiol Rep 4:484–490. doi:10.1111/j.1758-2229.2012.00347.x

    Article  CAS  Google Scholar 

  • Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396

    Article  CAS  Google Scholar 

  • Jetten MSM et al (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437

    Article  CAS  Google Scholar 

  • Jiang H, Dong H, Yu B, Lv G, Deng S, Berzins N, Dai M (2009) Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, Northwestern China. Geomicrobiol J 26:199–211

    Article  CAS  Google Scholar 

  • Jiang Y, Jin C, Sun B (2014) Soil aggregate stratification of nematodes and ammonia oxidizers affects nitrification in an acid soil. Environ Microbiol. doi:10.1111/1462-2920.12339

    Google Scholar 

  • Junier P, Kim O-S, Hadas O, Imhoff JF, Witzel K-P (2008) Evaluation of PCR primer selectivity and phylogenetic specificity by using amplification of 16S rRNA genes from betaproteobacterial ammonia-oxidizing bacteria in environmental samples. Appl Environ Microbiol 74:5231–5236

    Article  CAS  Google Scholar 

  • Junier P et al. (2010) Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol:1–16

  • Kartal B, Kuypers MMM, Lavik G, Schalk J, Op den Camp HJM, Jetten MSM, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642. doi:10.1111/j.1462-2920.2006.01183.x

    Article  CAS  Google Scholar 

  • Könneke M, Bernhard AE, Torre JRdl, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529. doi:10.1146/annurev.micro.55.1.485

    Article  CAS  Google Scholar 

  • Kuenen J, Jetten M (2001) Extraordinary anaerobic ammonium-oxidizing bacteria. ASM News 67:456

    Google Scholar 

  • Kuypers MMM et al (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611

    Article  CAS  Google Scholar 

  • Laanbroek HJ, Speksnijder AG (2008) Niche separation of ammonia-oxidizing bacteria across a tidal freshwater marsh. Environ Microbiol 10:3017–3025

    Article  CAS  Google Scholar 

  • Li M, Hong Y, Klotz M, Gu J-D (2010) A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Appl Microbiol Biotechnol 86:781–790

    Article  CAS  Google Scholar 

  • Liu Z (2009) Quality assessment of the supplementary water for Honghe national nature reserve wetland science & management 5:15–19

  • Ludwig W et al (1992) Complete 23S ribosomal RNA sequences of Gram-positive bacteria with a low DNA G + C content. Syst Appl Microbiol 15:487–501

    Article  CAS  Google Scholar 

  • Mohamed NM, Saito K, Tal Y, Hill RT (2009) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48

    Article  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–183

    Article  CAS  Google Scholar 

  • Nagelkerken I et al (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89:155–185

    Article  Google Scholar 

  • Neef A, Amann R, Schlesner H, Schleifer K-H (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144:3257–3266. doi:10.1099/00221287-144-12-3257

    Article  CAS  Google Scholar 

  • Nicol G, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  CAS  Google Scholar 

  • Norman JS, Barrett JE (2014) Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil. Soil Biol Biochem 69:141–146

    Article  CAS  Google Scholar 

  • Okano Y et al (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016. doi:10.1128/aem.70.2.1008-1016.2004

    Article  CAS  Google Scholar 

  • O’Mullan GD, Ward BB (2005) Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, California. Appl Environ Microbiol 71:697–705. doi:10.1128/aem.71.2.697-705.2005

    Article  Google Scholar 

  • Penton CR (2009) Anaerobic ammonium oxidation (anammox). In: Margesin R (ed) Permafrost Soils, Vol 16. Soil Biology. Springer Berlin Heidelberg, pp 149–158. doi:10.1007/978-3-540-69371-0_10

  • Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72:6829–6832. doi:10.1128/aem.01254-06

    Article  CAS  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382. doi:10.1128/aem.66.12.5368-5382.2000

    Article  CAS  Google Scholar 

  • Purkhold U, Wagner M, Timmermann G, Pommerening-Röser A, Koops H-P (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol 53:1485–1494

    Article  CAS  Google Scholar 

  • Quan Z-X et al (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139

    Article  CAS  Google Scholar 

  • Rich JJ, Dale OR, Song B, Ward BB (2008) Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments. Microb Ecol 55:311–320

    Article  CAS  Google Scholar 

  • Robertson LA, Dalsgaard T, Revsbech NP, Kuenen JG (1995) Confirmation of ‘aerobic denitrification’ in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol Ecol 18:113–120

    Article  CAS  Google Scholar 

  • Rochelle P, Will J, Fry J, Jenkins G, Parkes R, Turley C, Weightman A (1995) Extraction and amplification of 16S rRNA genes from deep marine sediments and seawater to assess bacterial community diversity. In: Elsas JDv, Trevors JT (eds) Nucleic Acids in the Environment: methods and applications. Springer, Berlin, Germany, pp 219-239

  • Ruiz-Rueda O, Hallin S, Baneras L (2009) Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol Ecol 67:308–319

    Article  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506. doi:10.1128/aem.71.3.1501-1506.2005

    Article  CAS  Google Scholar 

  • Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Schmid M et al (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106. doi:10.1016/s0723-2020(00)80050-8

    Article  CAS  Google Scholar 

  • Schmid M et al (2003) Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26:529–538

    Article  CAS  Google Scholar 

  • Schmid MC et al (2008) Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ Microbiol 10:3140–3149

    Article  CAS  Google Scholar 

  • Schmidt I et al (2002) Aerobic and anaerobic ammonia oxidizing bacteria—competitors or natural partners? FEMS Microbiol Ecol 39:175–181

    CAS  Google Scholar 

  • Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8:1857–1863

    Article  CAS  Google Scholar 

  • Shao S et al (2014) Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria. FEMS Microbiol Ecol 87:503–516. doi:10.1111/1574-6941.12241

    Article  CAS  Google Scholar 

  • Sher Y, Zaady E, Nejidat A (2013) Spatial and temporal diversity and abundance of ammonia oxidizers in semi-arid and arid soils: indications for a differential seasonal effect on archaeal and bacterial ammonia oxidizers. FEMS Microbiol Ecol 86:544–556. doi:10.1111/1574-6941.12180

    Article  CAS  Google Scholar 

  • Song B, Buckner CT, Hembury DJ, Mills RA, Palmer MR (2014) Impact of volcanic ash on anammox communities in deep sea sediments. Environ Microbiol Rep 6:159–166. doi:10.1111/1758-2229.12137

    Article  CAS  Google Scholar 

  • Stephen JR, Kowalchuk GA, Bruns M-AV, McCaig AE, Phillips CJ, Embley TM, Prosser JI (1998) Analysis of β-subgroup Proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64:2958–2965

    CAS  Google Scholar 

  • Stevens H, Ulloa O (2008) Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol 10:1244–1259

    Article  CAS  Google Scholar 

  • Strauss SL, Reardon CL, Mazzola M (2014) The response of ammonia-oxidizer activity and community structure to fertilizer amendment of orchard soils. Soil Biol Biochem 68:410–418

    Article  CAS  Google Scholar 

  • Sun W, Xu MY, Wu WM, Guo J, Xia CY, Sun GP, Wang AJ (2014) Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. J Appl Microbiol 116:464–476. doi:10.1111/jam.12367

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  • van de Vossenberg J et al (2013) The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol 15:1275–1289. doi:10.1111/j.1462-2920.2012.02774.x

    Article  Google Scholar 

  • Voytek M, Ward B (1995) Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl Environ Microbiol 61:1444–1450

    CAS  Google Scholar 

  • Wang Y-F, Gu J-D (2013) Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland. Appl Microbiol Biotechnol 97:7015–7033. doi:10.1007/s00253-012-4430-4

    Article  CAS  Google Scholar 

  • Wang Y-F, Gu J-D (2014) Effects of allylthiourea, salinity and pH on ammonia/ammonium-oxidizing prokaryotes in mangrove sediment incubated in laboratory microcosms. Appl Microbiol Biotechnol 98:3257–3274. doi:10.1007/s00253-013-5399-3

    Article  CAS  Google Scholar 

  • Wang J, Dong H, Wang W, Gu J-D (2013a) Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5242-x

    Google Scholar 

  • Wang J, Wang W, Gu J-D (2013b) Community structure and abundance of ammonia-oxidizing archaea and bacteria after conversion from soybean to rice paddy in albic soils of Northeast China. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5213-2

    Google Scholar 

  • Wang Y-F, Feng Y-Y, Ma X, Gu J-D (2013c) Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Appl Microbiol Biotechnol 97:7919–7934. doi:10.1007/s00253-012-4510-5

    Article  CAS  Google Scholar 

  • Wang Y-F, Li X-Y, Gu J-D (2014a) Differential responses of ammonia/ammonium-oxidizing prokaryotes in mangrove sediment to amendment of acetate and leaf litter. Appl Microbiol Biotechnol 98:3165–3180. doi:10.1007/s00253-013-5318-7

    Article  CAS  Google Scholar 

  • Wang Y, Zhu G, Song L, Wang S, Yin C (2014b) Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil. J Basic Microbiol 54:190–197. doi:10.1002/jobm.201200671

    Article  Google Scholar 

  • Woebken D et al (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119

    Article  CAS  Google Scholar 

  • You J, Das A, Dolan EM, Hu Z (2009) Ammonia-oxidizing archaea involved in nitrogen removal. Water Res 43:1801–1809

    Article  CAS  Google Scholar 

  • Zhang L-M, Wang M, Prosser JI, Zheng Y-M, He J-Z (2009) Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol Ecol 70:208–217. doi:10.1111/j.1574-6941.2009.00775.x

    Article  CAS  Google Scholar 

  • Zheng Y, Hou L, Liu M, Lu M, Zhao H, Yin G, Zhou J (2013) Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments. Appl Microbiol Biotechnol 97:8351–8363. doi:10.1007/s00253-012-4512-3

    Article  CAS  Google Scholar 

  • Zhou D, Gong H, Wang Y, Khan S, Zhao K (2009) Driving forces for the marsh wetland degradation in the Honghe National Nature Reserve in Sanjiang Plain, Northeast China. Environ Model Assessment 14:101–111

    Article  Google Scholar 

  • Zhou Z, Shi X, Zheng Y, Qin Z, Xie D, Li Z, Guo T (2014) Abundance and community structure of ammonia-oxidizing bacteria and archaea in purple soil under long-term fertilization European. J Soil Biol 60:24–33

    Article  CAS  Google Scholar 

  • Zhu G, Jetten MS, Kuschk P, Ettwig KF, Yin C (2010) Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biotechnol 86:1043–1055

    Article  CAS  Google Scholar 

  • Zuber G, Goldsmith MR, Beratan DN, Wipf P (2005) Assignment of the absolute configuration of [n]-ladderanes by TD-DFT optical rotation calculations. Chirality 17:507–510

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a studentship (KHL) from the Graduate School of The University of Hong Kong and research grant number No. 2012B030800011 (GZ). Additional financial support of this project was from Environmental Toxicology Education and Research Fund of this laboratory. We would like to thank the help and assistance of Mr. Dehui Shi from Honghe State Farm for obtaining permission to gain access to the sampling sites, and of Miss Chunyu Zheng of Jin Zuo Yue Company for the transportation and logistics provided during the sampling. We also thank Miss Jessie Lai and Kelly Lau for support in chemical analysis and Dr. Jing Wang for assistance in field sampling.

Conflict of interest

The authors have no conflict of interest in research results report here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Dong Gu.

Additional information

Kwok-Ho Lee and Yong-Feng Wang are contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KH., Wang, YF., Zhang, GX. et al. Distribution patterns of ammonia-oxidizing bacteria and anammox bacteria in the freshwater marsh of Honghe wetland in Northeast China. Ecotoxicology 23, 1930–1942 (2014). https://doi.org/10.1007/s10646-014-1333-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1333-4

Keywords

Navigation