Skip to main content
Log in

Use of polar organic chemical integrative samplers to assess the effects of chronic pesticide exposure on biofilms

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The responses of aquatic organisms to chronic exposure to environmental concentrations of toxicants, often found in mixtures, are poorly documented. Here passive sampler extracts were used in experimental contamination of laboratory channels, to investigate their effects on natural biofilm communities. A realistic mixture of pesticides extracted from Polar Organic Chemical Integrative Samplers was used to expose biofilms in laboratory channels to total pesticide concentrations averaging 0.5 ± 0.1 μg l−1. The level of exposure was representative of field conditions in terms of relative proportions of the substances but the exposure concentration was not maintained (decreasing concentrations between contamination occasions). The impact on the structural as well as the functional characteristics of the autotrophic and heterotrophic components was determined, using biofilm grown in uncontaminated conditions (reference site) and in sites exposed to pesticides (contaminated site). The exposure imposed did not significantly modify the structure or functions of reference biofilms, nor did it modify tolerance as measured by mixture EC50 (EC50 mix). In contrast, the communities from the more contaminated downstream section lost tolerance following decreased dose exposure, but community composition remained fairly stable. Overall, these results indicate that low levels of contamination did not lead to strong changes in community structure, and 14-day changes in tolerance seemed to depend mainly on physiological adaptation, suggesting that other environmental factors or longer-lasting processes prevailed. This study reports the first attempt to use passive sampler extracts as a realistic composite contaminant for experimental exposure of biofilms, with promising perspectives in further ecotoxicology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldén Demoling L, Bååth E (2008) No long-term persistence of bacterial Pollution-Induced Community tolerance in tylosin-polluted soil. Environ Sci Technol 42(18):6917–6921. doi:10.1021/es8004706

    Article  Google Scholar 

  • Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23(7):1640–1648

    Article  CAS  Google Scholar 

  • Artigas J, Arts G, Babut M, Caracciolo AB, Charles S, Chaumot A, Combourieu B, Dahllöf I, Despréaux D, Ferrari B, Friberg N, Garric J, Geffard O, Gourlay-Francé C, Hein M, Hjorth M, Krauss M, De Lange HJ, Lahr J, Lehtonen KK, Lettieri T, Liess M, Lofts S, Mayer P, Morin S, Paschke A, Svendsen C, Usseglio-Polatera P, van den Brink N, Vindimian E, Williams R (2012) Towards a renewed research agenda in ecotoxicology. Environ Pollut 160:201–206

    CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59(1):89–113. doi:10.1146/annurev.arplant.59.032607.092759

    Article  CAS  Google Scholar 

  • Blanck H, Wängberg SA, Molander S (1988) Pollution-Induced Community tolerance: a new ecotoxicological tool. In: Cairns J Jr., Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals. American Society for Testing and Materials, Philadelphia, pp 219–230

  • Chèvre N, Loepfe C, Singer H, Stamm C, Fenner K, Escher BI (2006) Including mixtures in the determination of water quality criteria for herbicides in surface water. Environ Sci Technol 40(2):426–435. doi:10.1021/es050239l

    Article  Google Scholar 

  • Choubert J-M, Martin-Ruel S, Coquery M (2009) Prélèvement et échantillonnage des substances prioritaires et émergentes dans les eaux usées. Les prescriptions techniques du projet de recherche AMPERES. Tech Sci Méthodes 4:88–101

    Google Scholar 

  • Dorigo U, Leboulanger C, Bérard A, Bouchez A, Humbert JF, Montuelle B (2007) Lotic biofilm community structure and pesticide tolerance along a contamination gradient in a vineyard area. Aquat Microb Ecol 50:91–102

    Article  Google Scholar 

  • Duong TT, Morin S, Herlory O, Feurtet-Mazel A, Coste M, Boudou A (2008) Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat Toxicol 90(1):19–28

    Article  CAS  Google Scholar 

  • Escher BI, Quayle P, Muller R, Schreiber U, Mueller JF (2006) Passive sampling of herbicides combined with effect analysis in algae using a novel high-throughput phytotoxicity assay (Maxi-Imaging-PAM). J Environ Monit 8(4):456–464

    Article  CAS  Google Scholar 

  • Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25(1):272–280. doi:10.1897/05-257r.1

    Article  CAS  Google Scholar 

  • Geiszinger A, Bonnineau C, Faggiano L, Guasch H, López-Doval JC, Proia L, Ricart M, Ricciardi F, Romaní A, Rotter S, Muñoz I, Schmitt-Jansen M, Sabater S (2009) The relevance of the community approach linking chemical and biological analyses in pollution assessment. Trends Anal Chem 28(5):619–626

    Article  CAS  Google Scholar 

  • Guasch H, Navarro E, Serra A, Sabater S (2004) Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwat Biol 49(4):463–473

    Article  CAS  Google Scholar 

  • Helsel DR (1990) Less than obvious—statistical treatment of data below the detection limit. Environ Sci Technol 24(12):1766–1774. doi:10.1021/es00082a001

    Article  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Knauert S (2008) Toxicity of pesticides and their mixture to primary producers. PhD thesis, Philosophish-Naturwissenschaftlichen Fakultät, Universität Basel

  • Knauert S, Escher B, Singer H, Hollender J, Knauer K (2008) Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms. Environ Sci Technol 42(17):6424–6430. doi:10.1021/es072037q

    Article  CAS  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae 1. Teil: Naviculaceae. p 876; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, p 596; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, p 576; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. p 437, vol Band 2/1-4. Süßwasserflora von Mitteleuropa. G. Fischer Verlag, Stuttgart

  • Laviale M, Morin S, Créach A (2011) Short term recovery of periphyton photosynthesis after pulse exposition to the photosystem II inhibitors atrazine and isoproturon. Chemosphere 84(5):731–734

    Article  CAS  Google Scholar 

  • Lissalde S, Mazzella N, Fauvelle V, Delmas F, Mazellier P, Legube B (2011) Liquid chromatography coupled with tandem mass spectrometry method for thirty-three pesticides in natural water and comparison of performance between classical solid phase extraction and passive sampling approaches. J Chromatogr A 1218(11):1492–1502

    Article  CAS  Google Scholar 

  • Mazzella N, Dubernet J-F, Delmas F (2007) Determination of kinetic and equilibrium regimes in the operation of polar organic chemical integrative samplers: application to the passive sampling of the polar herbicides in aquatic environments. J Chromatogr A 1154(1–2):42–51

    Article  CAS  Google Scholar 

  • Mazzella N, Lissalde S, Moreira S, Delmas F, Mazellier P, Huckins JN (2010) Evaluation of the use of performance reference compounds in an Oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater. Environ Sci Technol 44(5):1713–1719. doi:10.1021/es902256m

    Article  CAS  Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data, version 4.01. MJM Software, Gleneden Beach, Oregon USA

  • Montuelle B, Dorigo U, Bérard A, Volat B, Bouchez A, Tlili A, Gouy V, Pesce S (2010) The periphyton as a multimetric bioindicator for assessing the impact of land use on rivers: an overview of the Ardières-Morcille experimental watershed (France). Hydrobiologia 1–19. doi:10.1007/s10750-010-0105-2

  • Morin S, Duong TT, Herlory O, Feurtet-Mazel A, Coste M (2008) Cadmium toxicity and bioaccumulation in freshwater biofilms. Arch Environ Contam Toxicol 54(2):173–186

    Article  CAS  Google Scholar 

  • Morin S, Pesce S, Tlili A, Coste M, Montuelle B (2010a) Recovery potential of periphytic communities in a river impacted by a vineyard watershed. Ecol Indic 10(2):419–426

    Article  CAS  Google Scholar 

  • Morin S, Proia L, Ricart M, Bonnineau C, Geiszinger A, Ricciardi F, Guasch H, Romaní A, Sabater S (2010b) Effects of a bactericide on the structure and survival of benthic diatom communities. Vie Milieu 60(2):107–114

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) vegan: community ecology package. R package version 1.17-2. http://CRAN.R-project.org/package=vegan

  • Pesce S, Margoum C, Montuelle B (2010) In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Res 44(6):1941–1949

    Article  CAS  Google Scholar 

  • Pesce S, Morin S, Lissalde S, Montuelle B, Mazzella N (2011) Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms. Environ Pollut 159(3):735–741

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core team (2009) nlme: linear and nonlinear mixed effects models. R package version 3.1-96

  • Plan Ecophyto (2018) de Réduction des Usages de Pesticides 2008–2018. http://agriculture.gouv.fr/IMG/pdf/PLAN_ECOPHYTO_2018-2-2.pdf. Accessed 20 April 2012

  • Rabiet M, Margoum C, Gouy V, Carluer N, Coquery M (2010) Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment: effect of sampling frequency. Environ Pollut 158(3):737–748

    Article  CAS  Google Scholar 

  • Relyea R, Hoverman J (2006) Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecol Lett 9(10):1157–1171. doi:10.1111/j.1461-0248.2006.00966.x

    Article  Google Scholar 

  • Ricart M, Barceló D, Geiszinger A, Guasch H, Alda MLd, Romaní AM, Vidal G, Villagrasa M, Sabater S (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76(10):1392–1401

    Article  CAS  Google Scholar 

  • Riedl J, Altenburger R (2007) Physicochemical substance properties as indicators for unreliable exposure in microplate-based bioassays. Chemosphere 67(11):2210–2220

    Article  CAS  Google Scholar 

  • Schmitt-Jansen M, Altenburger R (2008) Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry. Aquat Toxicol 86(1):49–58

    Article  CAS  Google Scholar 

  • Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2008) An ecological perspective in aquatic ecotoxicology: approaches and challenges. Basic Appl Ecol 9(4):337–345

    Article  CAS  Google Scholar 

  • Shaw M, Negri A, Fabricius K, Mueller JF (2009) Predicting water toxicity: pairing passive sampling with bioassays on the Great Barrier Reef. Aquat Toxicol 95(2):108–116

    Article  CAS  Google Scholar 

  • Tlili A, Bérard A, Roulier J-L, Volat B, Montuelle B (2010) PO4 3− dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquat Toxicol 98(2):165–177

    Article  CAS  Google Scholar 

  • Tlili A, Montuelle B (2011) Microbial Pollution-Induced Community tolerance. In: Amiard-Triquet C, Rainbow PS, Roméo M (eds) Tolerance to environmental contaminants. CRC Press, Boca Raton, pp 85–108

  • Tlili A, Marechal M, Montuelle B, Volat B, Dorigo U, Bérard A (2011) Use of the MicroResp(TM) method to assess pollution-induced community tolerance to metals for lotic biofilms. Environ Pollut 159(1):18–24

    Article  CAS  Google Scholar 

  • Ylla I, Borrego C, Romaní AM, Sabater S (2009) Availability of glucose and light modulates the structure and function of a microbial biofilm. FEMS Microbiol Ecol 69(1):27–42. doi:10.1111/j.1574-6941.2009.00689.x

    Article  CAS  Google Scholar 

  • Zabiegała B, Kot-Wasik A, Urbanowicz M, Namieśnik J (2010) Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Anal Bioanal Chem 396(1):273–296. doi:10.1007/s00216-009-3244-4

    Article  Google Scholar 

Download references

Acknowledgments

The French National Office for the Aquatic Environment (ONEMA-CEMAGREF agreement, action 26) and the Cemagref’s “PestExpo” Research Program provided financial support for this experiment. The authors thank Marjorie Maréchal, Bernard Motte, Cécile Nassiet, Christophe Rosy, Bernadette Volat and Josiane Gahou for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soizic Morin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morin, S., Pesce, S., Kim-Tiam, S. et al. Use of polar organic chemical integrative samplers to assess the effects of chronic pesticide exposure on biofilms. Ecotoxicology 21, 1570–1580 (2012). https://doi.org/10.1007/s10646-012-0910-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0910-7

Keywords

Navigation