Skip to main content
Log in

DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzo-dioxathiepin-3-oxide), an organochlorine pesticide, is prevalently used all around the world. It is considered to be a new candidate for the persistent organic pollutants group. Endosulfan residues in the environment may cause serious damage to ecosystems, especially in aquatic environments. The present study was conducted to investigate the effect of endosulfan on antioxidant enzymes [catalase (CAT) and superoxide dismutase (SOD)], reactive oxygen species (ROS) generation and DNA damage in zebrafish. Male and female zebrafish were separated and exposed to a control solution and four concentrations of endosulfan (0.01, 0.1, 1, and 10 μg L−1) and were sampled after 7, 14, 21, and 28 days. It is noteworthy that the present research explored the correlation among the three indicators induced by endosulfan. Low endosulfan concentrations (0.01 μg L−1) induced a slight increase of SOD and CAT activity, which kept ROS in a stable level. High endosulfan concentration (10 μg L−1) induced excessive ROS production which exceeded the capacity of the cellular antioxidants and exhausted the enzyme including CAT and SOD. The DNA damage of zebrafish was evaluated by single-cell gel electrophoresis and was enhanced with increasing endosulfan concentration. In conclusion, the present study showed that endosulfan (0.01–10 μg L−1) has toxic effects on zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman LK, Schwindt AR, Simonich SLM, Koch DC, Blett TF, Schreck CB, Kent ML, Landers DH (2008) Atmospherically deposited PBDEs, pesticides, PCBs, and PAHs in Western U.S. National Park fish: concentrations and consumption guidelines. Environ Sci Technol 42:2334–2341. doi:10.1021/es702348j

    Article  CAS  Google Scholar 

  • Attila H, Sara E, Gabor H (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093. doi:10.1016/S0168-9452(01)00330-2

    Article  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Diekmann M, Hultsch V, Nagel R (2004a) On the relevance of genotoxicity for fish populations I: effects of a model genotoxicant on zebrafish (Danio rerio) in a complete life-cycle test. Aquat Toxicol 68:13–26. doi:10.1016/j.aquatox.2004.01.020

    Article  CAS  Google Scholar 

  • Diekmann M, Waldmann P et al (2004b) On the relevance of genotoxicity for fish populations II: genotoxic effects in zebra fish (Danio rerio) exposed to 4-nitroquinoline-1-oxide in a complete life-cycle test. Aquat Toxicol 68:27–37. doi:10.1016/j.aquatox.2004.01.019

    Article  CAS  Google Scholar 

  • Dong XL, Zhu LS et al (2009) Effects of atrazine on cytochrome P450 enzymes of zebrafish (Danio rerio). Chemosphere 77:404–412. doi:10.1016/j.chemosphere.2009.06.052

    Article  CAS  Google Scholar 

  • Dorval J, Leblond VS, Hontela A (2003) Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochlorine pesticide. Aquat Toxicol 63:229–241. doi:10.1016/S0166-445X(02)00182-0

    Article  CAS  Google Scholar 

  • Dubois M, Pfohl-Leszkowiczb A, De Waziersc I, Kremers P (1996) Selective induction of the CYP3A family by endosulfan and DNA-adduct formation in different hepatic and hepatoma cells. Environ Toxicol Pharmacol 1:249–256

    Article  CAS  Google Scholar 

  • Dutta HM, Arends DA (2003) Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish. Environ Res 91:157–162. doi:10.1016/S0013-9351(02)00062-2

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radical Biol Med 35:9–16. doi:10.1016/S0891-5849(03)00186-2

    Article  CAS  Google Scholar 

  • Ledirac N, Antherieu S, d’Uby AD, Caron JC, Rahmani R (2005) Effects of organochlorine insecticides on MAP kinase pathways in human HaCaT keratinocytes: key role of reactive oxygen species. Toxicol Sci 86(2):444–452

    Article  CAS  Google Scholar 

  • Miller LL, Llados R (1999) Toxicological profile for endosulfan. In: Draft report, vol 4.3. US Agency for Toxic Substances and Disease Registry, Atlanta, pp 162–163

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  CAS  Google Scholar 

  • Moreno I, Pichardo S, Jos A, Gómez-Amores L, Mate A, Vazquez CM, Cameán AM (2005)Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon 45:395–402

    Google Scholar 

  • Murty AS (1986) Pesticides in the environment. In: Toxicity of pesticides to fish, vol. 1. CRC Press, Boca Raton, pp 1–36

  • Neuparth T, Bickham JW, Theodorakis CW, Costa FO, Costa MH (2006) Endosulfan-induced genotoxicity detected in the gilthead seabream, Sparus aurata L., by means of flow cytometry and micronuclei assays. Bull Environ Contam Toxicol 17:242–248

    Article  Google Scholar 

  • Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biol Med 31:1287–1312

    Article  CAS  Google Scholar 

  • O’Brien TJ, Ceryak S, Patierno SR (2003) Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res 533:3–36. doi:10.1016/j.mrfmmm.2003.09.006

    Article  Google Scholar 

  • Oliveira M, Maria VL, Ahmad I, Serafim A et al (2009) Contamination assessment of a coastal lagoon (Ria de Aveiro, Portugal) using defence and damage biochemical indicators in gill of Liza aurata—an integrated biomarker approach. Environ Pollut 157:959–967. doi:10.1016/j.envpol.2008.10.019

    Article  CAS  Google Scholar 

  • Pandey S, Ahmad I et al (2001) Effect of endosulfan on antioxidants of freshwater fish Channa punctatus Bloch: 1. Protection against lipid peroxidation in liver by copper preexposure. Arch Environ Contam Toxicol 41:345–352

    Article  CAS  Google Scholar 

  • Rana I, Shivanandappa T (2010) Mechanism of potentiation of endosulfan cytotoxicity by thiram in Ehrlich ascites tumor cells. Toxicol In Vitro 24:40–44

    Article  CAS  Google Scholar 

  • Sharma S, Nagpure NS, Kumar R et al (2007) Studies on the genotoxicity of endosulfan in different tissues of fresh water fish Mystus vittatus using the comet assay. Arch Environ Contam Toxicol 53:617–623. doi:10.1016/j.tox.2004.06.062

    Article  CAS  Google Scholar 

  • Sies H (1991) Oxidative stress: introduction. In: Sies H (ed) Oxidative stress: oxidants and antioxidants, vol 23. Academic Press, San Diego, pp 21–48

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Song Y, Zhu LS, Wang J, Wang JH, Liu W, Xie H (2009) DNA damage and effects on antioxidative enzymes in earthworm (Eisenia fetida) induced by atrazine. Soil Biol Biochem 41:905–909

    Article  CAS  Google Scholar 

  • Stern GA, Braekevelt E, Helm PA et al (2005) Modern and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores. Sci Total Environ 342:223–243

    Article  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    CAS  Google Scholar 

  • Swann JD, Smith MW, Phelps PC, Maki A, Berezesky IK, Trump BF (1991) Oxidative injury induces influxdependent changes in intracellular calcium homeostasis. Toxicol Pathol 19:128–137

    Article  CAS  Google Scholar 

  • Vega-López A, Galar-Martínez M, Jiménez-Orozc,o FA, García-Latorre E, Domínguez-López ML (2007) Gender related differences in the oxidative stress response to PCB exposure in an endangered goodeid fish (Girardinichthys viviparus). Comp Biochem Phys A 146:672–678

    Google Scholar 

  • Wang MH, Wang DZ, Lin L, Hong HS (2010) Protein profiles in zebrafish (Danio rerio) brains exposed to chronic microcystin-LR. Chemosphere 81:716–724. doi:10.1016/j.chemosphere.2010.07.061

    Article  CAS  Google Scholar 

  • Weber J, Halsall CJ, Muir D, Teixeira C et al (2009) Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ 408:2966–2984. doi:10.1016/j.scitotenv.2009.10.077

    Google Scholar 

  • WHO (1984) Endosulfan. In: International programme on chemical safety, environmental health criteria, vol 40. World Health Organization, Geneva

  • Wiegand C, Krause E, Steinberg C, Pflugmacher S (2001) Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio). Ecotoxicol Environ Safe 49:199–205. doi:10.1006/eesa.2001.2073

    Article  CAS  Google Scholar 

  • Zelikoff JT, Wang W et al. (1996) Assays of reactive oxygen intermediates and antioxidant enzymes: potential biomarkers for predicting effects of environmental pollution. In: Ostrander GK (ed) Techniques in aquatic toxicology. Lewis, Boca Raton, pp 287–306

  • Zhu LS, Dong XL, Xie H, Wang J, Wang JH, Su J, Yu CW (2011) DNA damage and effects on glutathione-S transferase activity induced by atrazine exposure in zebrafish (Danio rerio). Environ Toxicol 26:480–488

    Article  Google Scholar 

Download references

Acknowledgments

The present work was supported by grants from the National Natural Science Foundation of China [No. 41071164, 40801203, and 41001152], Specialized Research Fund for the Doctoral Program of Higher Education [20113702110007] and the Postdoctoral Science Foundation of China [No. 20080431215 and 200801418].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, B., Zhu, L., Dong, M. et al. DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology 21, 1533–1540 (2012). https://doi.org/10.1007/s10646-012-0907-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0907-2

Keywords

Navigation