Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination

Abstract

Despite evidence of persistent methylmercury (MeHg) contamination in the South River (Virginia, USA) ecosystem, there is little information concerning MeHg-associated neurological impacts in resident wildlife. Here we determined mercury (Hg) concentrations in tissues of insectivorous little brown bats (Myotis lucifugus) collected from a reference site and a MeHg-contaminated site in the South River ecosystem. We also explored whether neurochemical biomarkers (monoamine oxidase, MAO; acetylcholinesterase, ChE; muscarinic acetylcholine receptor, mAChR; N-methyl-d-aspartate receptor, NMDAR) previously shown to be altered by MeHg in other wildlife were associated with brain Hg levels in these bats. Concentrations of Hg (total and MeHg) in tissues were significantly higher (10–40 fold difference) in South River bats when compared to reference sites. Mean tissue mercury levels (71.9 ppm dw in liver, 7.14 ppm dw in brain, 132 ppm fw in fur) in the South River bats exceed (sub)-clinical thresholds in mammals. When compared to the South River bats, animals from the reference site showed a greater ability to demethylate MeHg in brain (33.1% of total Hg was MeHg vs. 65.5%) and liver (8.9% of total Hg was MeHg vs. 50.8%) thus suggesting differences in their ability to detoxify and eliminate Hg. In terms of Hg-associated neurochemical biomarker responses, interesting biphasic responses were observed with an inflection point between 1 and 5 ppm dw in the brain. In the reference bats Hg-associated decreases in MAO (r = −0.61; p < 0.05) and ChE (r = −0.79; p < 0.01) were found in a manner expected but these were not found in the bats from the contaminated site. Owing to high Hg exposures, differences in Hg metabolism, and the importance of the aforementioned neurochemicals in multiple facets of animal health, altered or perhaps even a lack of expected neurochemical responses in Hg-contaminated bats raise questions about the ecological and physiological impacts of Hg on the bat population as well as the broader ecosystem in the South River.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams DH, Sonne C, Basu N, Dietz R, Nam DH, Leifsson PS, Jensen AL (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408:5808–5816

    Article  CAS  Google Scholar 

  2. Allinson G, Mispagel C, Kajiwara N, Anan Y, Hashimoto J, Laurenson L, Allinson M, Tanabe S (2006) Organochlorine and trace metal residues in adult southern bent-wing bat (Miniopterus schreibersii bassanii) in southeastern Australia. Chemosphere 64(9):1464–1471

    Article  CAS  Google Scholar 

  3. Animal Care and Use Committee (1998) Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. J Mammal 79:1416–1431

    Article  Google Scholar 

  4. Aschner M, Aschner JL (1990) Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev 14(2):169–176

    Article  CAS  Google Scholar 

  5. Basu N, Scheuhammer AM, Grochowina N, Klenavic K, Evans D, O’Brien M, Chan HM (2005) Effects of mercury on neurochemical receptors in wild river otters (Lontra canadensis). Environ Sci Technol 39(10):3585–3591

    Article  CAS  Google Scholar 

  6. Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina N, Klenavic K, Evans RD, Chan HM (2006) Methylmercury impairs components of the cholinergic system in captive mink (Mustela vison). Toxicol Sci 91:202–209

    Article  CAS  Google Scholar 

  7. Basu N, Scheuhammer AM, Evans RD, O’Brien M, Chan HM (2007a) Cholinesterase and monoamine oxidase activity in relation to mercury levels in the cerebral cortex of wild river otters. Hum Exp Toxicol 26(3):213–220

    Article  CAS  Google Scholar 

  8. Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina N, Evans RD, O’Brien M, Chan HM (2007b) Decreased N-methyl-d-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. Neurotoxicology 28(3):587–593

    Article  CAS  Google Scholar 

  9. Basu N, Scheuhammer AM, Bursian S, Rouvinen-Watt K, Elliott J, Chan HM (2007c) Mink as a sentinel in environmental health. Environ Res 103:130–144

    Article  CAS  Google Scholar 

  10. Basu N, Scheuhammer AM, Rouvinen-Watt K, Evans RD, Grochowina N, Chan LH (2008) The effects of mercury on muscarinic cholinergic receptor subtypes (M1 and M2) in captive mink. Neurotoxicology 29(2):328–334

    Article  CAS  Google Scholar 

  11. Basu N, Scheuhammer AM, Sonne C, Letcher RJ, Born EW, Dietz R (2009) Is dietary mercury of neurotoxicological concern to wild polar bears (Ursus maritimus)? Environ Toxicol Chem 28(1):133–140

    Article  CAS  Google Scholar 

  12. Bergeron CM, Bodinof CM, Unrine JM, Hopkins WA (2010a) Mercury accumulation along a contamination gradient and nondestructive indices of bioaccumulation in amphibians. Environ Toxicol Chem 29(4):980–988

    Article  CAS  Google Scholar 

  13. Bergeron CM, Bodinof CM, Unrine JM, Hopkins WA (2010b) Bioaccumulation and maternal transfer of mercury and selenium in amphibians. Environ Toxicol Chem 29(4):989–997

    Article  CAS  Google Scholar 

  14. Bonuccelli U, Piccini P, Del Dotto P, Pacifici GM, Corsini GU, Muratorio A (1990) Platelet monoamine oxidase B activity in parkinsonian patients. J Neurol Neurosurg Psychiatry 53(10):854–855

    Article  CAS  Google Scholar 

  15. Burton GV, Alley RJ, Rasmussen GL, Orton P, Cox V, Jones P, Graff D (1977) Mercury and behavior in wild mouse populations. Environ Res 14(1):30–34

    Article  CAS  Google Scholar 

  16. Calabrese EJ, Baldwin LA (2003) Inorganics and hormesis. Crit Rev Toxicol 33(3–4):215–304

    Article  CAS  Google Scholar 

  17. Carter LJ (1977) Chemical plants leave unexpected legacy for two Virginia Rivers. Science 198(4321):1015–1020

    Article  CAS  Google Scholar 

  18. Castoldi AF, Coccini T, Ceccatelli S, Manzo L (2001) Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 55(2):197–203

    Article  CAS  Google Scholar 

  19. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662

    Article  CAS  Google Scholar 

  20. Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320(5874):335

    Article  CAS  Google Scholar 

  21. Cumbie PM (1975) Mercury levels in Georgia otter, mink and freshwater fish. Bull Environ Contam Toxicol 14(2):193–196

    Article  CAS  Google Scholar 

  22. Dietz R, Born EW, Riget F, Sonne C, Aubail A, Drimmie R, Basu N (2011) Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. Environ Sci Technol 45(4):1458–1465

    Article  CAS  Google Scholar 

  23. Ekino S, Susa M, Ninomiya T, Imamura K, Kitamura T (2007) Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J Neurol Sci 262(1–2):131–144

    Article  CAS  Google Scholar 

  24. Eto K (2000) Minamata disease. Neuropathology 20(Suppl):S14–S19

    Article  Google Scholar 

  25. Gerell R, Lundberg KG (1993) Decline of a bat pipistrellus pipistrellus population in an industrialized area in south sweden. Biol Consev 65:153–157

    Article  Google Scholar 

  26. Hickey MB, Fenton MB (1996) Behavioral and thermoregulatory responses of female hoary bats, lasiurus cinereus (chiroptera: Vespertilionidae), to variations in prey availability. Ecoscience 3:414–422

    Google Scholar 

  27. Hickey MB, Fenton MB, MacDonald KC, Soulliere C (2001) Trace elements in the fur of bats (Chiroptera: Vespertilionidae) from Ontario and Quebec, Canada. Bull Environ Contam Toxicol 66(6):699–706

    Article  CAS  Google Scholar 

  28. Khan MA, Wang F (2009) Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem 28(8):1567–1577

    Article  CAS  Google Scholar 

  29. Kinghorn A, Solomon P, Chan HM (2007) Temporal and spatial trends of mercury in fish collected in the English-Wabigoon river system in Ontario, Canada. Sci Total Environ 372(2–3):615–623

    CAS  Google Scholar 

  30. Kumar S (1998) Biphasic effect of aluminium on cholinergic enzyme of rat brain. Neurosci Lett 248(2):121–123

    Article  CAS  Google Scholar 

  31. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S–1015S

    CAS  Google Scholar 

  32. Mergler D, Anderson HA, Chan LH, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11

    Article  CAS  Google Scholar 

  33. Meteyer CU, Valent M, Kashmer J, Buckles EL, Lorch JM, Blehert DS, Lollar A, Berndt D, Wheeler E, White CL, Ballmann AE (2011) Recovery of little brown bats (Myotis lucifugus) from natural infection with geomyces destructants, white-nose syndrome. J Wildl Dis 47(3):618–626

    Google Scholar 

  34. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    CAS  Google Scholar 

  35. Miura T, Koyama T, Nakamura I (1978) Mercury content in museum and recent specimens of chiroptera in Japan. Bull Environ Contam Toxicol 20(5):696–701

    Article  CAS  Google Scholar 

  36. Nam DH, Basu N (2011) Rapid methods to detect organic mercury and total selenium in biological samples. Chem Cent J 5(1):3

    Article  CAS  Google Scholar 

  37. Nam DH, Adams DH, Flewelling LJ, Basu N (2010) Neurochemical alterations in lemon shark (Negaprion brevirostris) brains in association with brevetoxin exposure. Aquat Toxicol 99(3):351–359

    Article  CAS  Google Scholar 

  38. Nam DH, Adams DH, Reyier EA, Basu N (2011) Mercury and selenium levels in lemon sharks (Negaprion brevirostris) in relation to a harmful red tide event. Environ Monit Assess 176(1–4):549–559

    Article  CAS  Google Scholar 

  39. Powell GV (1983) Industrial effluents as a source of mercury contamination in terrestrial riparian vertebrates. Environ Pollut A 5:51–57

    Article  CAS  Google Scholar 

  40. Pybur MJ, Hobron DP, Onderka DK (1986) Mass mortality of bats due to probable blue-green algal toxicity. J Wildl Dis 22(3):449–450

    Google Scholar 

  41. Rutkiewicz J, Nam DH, Cooley T, Neumann K, Padilla IB, Route W, Strom S, Basu N (2011) Mercury exposure and neurochemical biomarkers in bald eagles across several Great Lakes States. Ecotoxicology 20(7):1669–1676

    Article  CAS  Google Scholar 

  42. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36(1):12–18

    Article  CAS  Google Scholar 

  43. Scheuhammer AM, Basu N, Burgess NM, Elliott JE, Campbell GD, Wayland M, Champoux L, Rodrigue J (2008) Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). Ecotoxicology 17(2):93–101

    Article  CAS  Google Scholar 

  44. Sleeman JM, Cristol DA, White AE, Evers DC, Gerhold RW, Keel MK (2010) Mercury poisoning in a free-living northern river otter (Lontra canadensis). J Wildl Dis 46(3):1035–1039

    CAS  Google Scholar 

  45. Stevens RT, Ashwood TL, Sleeman JM (1997) Mercury in hair of muskrats (Ondatra zibethicus) and mink (Mustela vison) from the U. S. Department of Energy Oak Ridge Reservation. Bull Environ Contam Toxicol 58(5):720–725

    Article  CAS  Google Scholar 

  46. Tokuomi H (1968) Minamata disease. Naika 21(5):864–870

    CAS  Google Scholar 

  47. Tomlinson G, Mutus B, McLennan I (1981) Activation and inactivation of acetylcholinesterase by metal ions. Can J Biochem 59(9):728–735

    Article  CAS  Google Scholar 

  48. Wada H, Cristol DA, McNabb FM, Hopkins WA (2009) Suppressed adrenocortical responses and thyroid hormone levels in birds near a mercury-contaminated river. Environ Sci Technol 43(15):6031–6038

    Article  CAS  Google Scholar 

  49. Wada H, Yates DE, Evers DC, Taylor RJ, Hopkins WA (2010) Tissue mercury concentrations and adrenocortical responses of female big brown bats (Eptesicus fuscus) near a contaminated river. Ecotoxicology 19(7):1277–1284

    Article  CAS  Google Scholar 

  50. Weinstock M, Gorodetsky E, Poltyrev T, Gross A, Sagi Y, Youdim M (2003) A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27(4):555–561

    Article  CAS  Google Scholar 

  51. Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450

    Article  CAS  Google Scholar 

  52. Wobeser G, Nielsen NO, Schiefer B (1976) Mercury and Mink. II. Experimental methyl mercury intoxication. Can J Comp Med 40(1):34–45

    CAS  Google Scholar 

  53. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the University of Michigan School of Public Health and Biodiversity Research Institute (BRI). We thank Rick Reynolds from the Virginia Department of Game and Inland Fisheries (VDGIF) for providing project advice. Also, special thanks to Larry, Josh, and the crew at the Augusta Forestry Center for their generosity in allowing use of their facility and field equipment. We offer a special thanks to Dan Cristol from the College of William and Mary and U.S. Fish and Wildlife Service biologists Casey Huck, Bita Zahedi, Tim Divoll, provided dedicated field assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Niladri Basu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nam, D., Yates, D., Ardapple, P. et al. Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination. Ecotoxicology 21, 1094–1101 (2012). https://doi.org/10.1007/s10646-012-0864-9

Download citation

Keywords

  • Methyl mercury
  • South River
  • Ecotoxicology
  • Neurochemical biomarkers
  • Wildlife