Skip to main content
Log in

Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

When the concentrations of ampicillin (Amp), atrazine (Atr) and cadmium chloride (Cd) reach excessive quantities, they become toxic to aquatic organisms. Due to the acceleration of the industrialization and the intensification of human activities, the incidence and concentrations of these types of pollutants in aquatic systems are increasing. The primary purpose of this study was to evaluate the short-term effects of Amp, Atr and Cd on the physiological indices and gene expression levels in Microcystis aeruginosa. These three pollutants significantly induced antioxidant activity but continuously accelerated the cellular oxidative damage in microalgae, which suggests an imbalance between the oxidant and the antioxidant systems. Amp, Atr and Cd also decreased the transcription of psaB, psbD1 and rbcL; the lowest transcription of these genes was only 38.1, 23.7 and 7% of the control, respectively. These three pollutants affected nitrogen (N) and phosphorous (P) uptake by inhibiting the transcription of N or P absorbing and transporting related genes, and they down regulated the transcription of microcystin-related genes, which caused a decrease of microcystin levels; and the lowest level of microcystin was only 42.4% of the control. Our results suggest that these pollutants may cause pleiotropic effects on algal growth and physiological and biochemical reactions, and they may even affect secondary metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asada K, Endo T, Mano J, Miyake C (1998) Molecular mechanism for relaxation of and protection from light stress. In: Sato K, Murata N (eds) Stress responses of photosynthetic organisms. Elsevier Science Publishing, Amsterdam, pp 37–52

    Google Scholar 

  • Capuano V, Thomas JC, de Tandeau Marssac N, Houmard J (1991) The anchor polypeptide of cyanobacterial phycobilisomes. J Biol Chem 266:7239–7247

    CAS  Google Scholar 

  • Cood GA, Poon AM (1988) Cyanobacterial toxins. Oxford University Press, Oxford

    Google Scholar 

  • Dai R, Liu H, Qu J, Zhao X, Ru J, Hou Y (2008) Relationship of energy charge and toxin content of Microcystis aeruginosa in nitrogen-limited or phosphorous-limited cultures. Toxicon 51:649–658

    Article  CAS  Google Scholar 

  • Dai R, Liu H, Qu J, Hou Y, Zhao X (2009) Effects of amino acids on microcystin production of the Microcystis aeruginosa. J Hazard Mater 161:730–736

    Article  CAS  Google Scholar 

  • De Lorenzo ME, Taylor LA, Lund SA, Pennington PL, Strozier ED, Fulton MH (2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch Environ Contam Toxicol 42:173–181

    Article  Google Scholar 

  • Elbaz A, Wei YY, Meng Q, Zheng Q, Yang ZM (2010) Mercury induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19:1285–1293

    Article  CAS  Google Scholar 

  • Geiken B, Masojídek J, Rizzuto M, Pompili ML, Giardi MT (1998) Incorporation of [35S] methionine in higher plants reveals that stimulation of D1 reaction center II protein turnover accompanies tolerance to heavy metal stress. Plant Cell Environ 21:1265–1273

    Article  CAS  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere 36:357–393

    Article  Google Scholar 

  • Hanikenne M (2003) Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. New Phytol 159:331–340

    Article  CAS  Google Scholar 

  • Harrass MC, Kindig AC, Taub FB (1985) Response of blue-green and green algae to streptomycin in unialgal and paired culture. Aquat Toxicol 6:1–11

    Article  CAS  Google Scholar 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  CAS  Google Scholar 

  • Holten Lützhøft HC, Halling-Sørensen B, Jørgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36:1–6

    Article  Google Scholar 

  • Hong Y, Hu H, Xie X, Akiyoshi S, Masaki S, Li F (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 91:262–269

    Article  CAS  Google Scholar 

  • Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87–98

    Article  CAS  Google Scholar 

  • Kaebernick M, Neilan BA, Börner T, Dittmann E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66:3387–3392

    Article  CAS  Google Scholar 

  • Krupa Z, Baszynski T (1995) Some aspects of heavy metals toxicity towards photosynthetic apparatus–direct and indirect effects on light and dark reactions. Acta Physiol Plant 17:177–190

    CAS  Google Scholar 

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    Article  CAS  Google Scholar 

  • Li X, Pan H, Xu J, Xian Q, Gao S, Yin D, Zou H (2008) Allelopathic effects of Ceratophyllum demersum and Microcystis aeruginosa in cocultivation. Acta Scientiae Circumstantiae 28:2243–2249

    CAS  Google Scholar 

  • Liu XG, Zhao JJ, Wu QY (2005) Oxidative stress and metal ions effects on the cores of phycobilisomes in Synechocystis sp. PCC 6803. FEBS Lett 579:4571–4576

    Article  CAS  Google Scholar 

  • Long BM, Jones GJ, Orr PT (2001) Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl Environ Microbiol 67:278–283

    Article  CAS  Google Scholar 

  • Lopez-Gomollon S, Hernandez JA, Pellicer S, Angarica VE, Peleato ML, Fillat MF (2007) Cross-talk between iron, nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: identification of overlapping genes in FurA and NtcA regulons. J Mol Biol 374:267–281

    Article  CAS  Google Scholar 

  • Lürling M, Roessink I (2006) On the way to cyanobacterial blooms: impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere 65:618–626

    Article  Google Scholar 

  • MEPPRC (2002) Standard methods for the examination of water and wastewater, 4th edition. Beijing, Ministry of Environmental Protection of the People’s Republic of China

  • Palatnik JF, Carrillo N, Valle EM (1999) The role of photosynthetic electron transport in the oxidative degradation of chloroplastic glutamine synthetase. Plant Physiol 121:471–478

    Article  CAS  Google Scholar 

  • Pan X, Chang F, Kang L, Liu Y, Li G, Li D (2008a) Effects of gibberellin A3 on growth and microcystin production in Microcystis aeruginosa (cyanophyta). J Plant Physiol 165:1691–1697

    Article  CAS  Google Scholar 

  • Pan X, Deng C, Zhang D, Wang J, Mu G, Chen Y (2008b) Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests. Aquat Toxicol 89:207–213

    Article  CAS  Google Scholar 

  • Pan X, Zhang D, Chen X, Mu G, Li L, Bao A (2009) Effects of levofloxacin hydrochloride on photosystem II activity and heterogeneity of Synechocystis sp. Chemosphere 77:413–418

    Article  CAS  Google Scholar 

  • Pearson LA, Hisbergues M, Börner T, Dittmann E, Neilan BA (2004) Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 70:6370–6378

    Article  CAS  Google Scholar 

  • Perrona MC, Juneau P (2011) Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ Res 11:520–529

    Article  Google Scholar 

  • Prado R, García R, Rioboo C, Herrero C, Abalde J, Cid A (2009) Comparison of the sensitivity of different toxicity test endpoints in a microalgae exposed to the herbicide paraquat. Environ Int 35:240–247

    Article  CAS  Google Scholar 

  • Qian H, Sheng GD, Liu W, Lu Y, Liu Z, Fu Z (2008) Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environ Toxicol Chem 27:182–187

    Article  CAS  Google Scholar 

  • Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, Fu Z (2009) Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol 94:56–61

    Article  CAS  Google Scholar 

  • Qian H, Li J, Pan X, Sun Z, Ye C, Jin G, Fu Z (2010) Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa. Environ Toxicol. doi:10.1002/tox.20636

  • Qu JH (2004) Sensitivity of five kinds of algae to commonly used antibiotics. J Dalian Inst Light Industry 23:111–113

    CAS  Google Scholar 

  • Rioboo C, Prado R, Herrero C, Cid A (2007) Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquat Toxicol 83:247–253

    Article  CAS  Google Scholar 

  • Sartory DP, Grobbelar JU (1986) Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177–187

    Article  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Fillat MF, Peleato ML (2008) Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ Microbiol 10:2476–2483

    Article  CAS  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Peleato ML, Fillat MF (2010) Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology 19:1167–1173

    Article  CAS  Google Scholar 

  • Sinha RP, Häder DP (2008) UV-protectants in cyanobacteria. Plant Sci 174:278–289

    Article  CAS  Google Scholar 

  • Straub C, Quillardet P, Vergalli J, de Marsac NT, Humbert JF (2011) A Day in the life of Microcystis aeruginosa strain PCC7806 as revealed by a transcriptomic analysis. PLoS ONE 6:e16208

    Article  CAS  Google Scholar 

  • Su Z, Olman V, Mao F, Xu Y (2005) Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis. Nucleic Acid Res 33:5156–5171

    Article  CAS  Google Scholar 

  • Utkilen H, Gjolme N (1995) Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol 61:797–800

    CAS  Google Scholar 

  • Vezie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K (2002) Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microbiol Ecol 43:443–454

    Article  CAS  Google Scholar 

  • Wang Y, Jin H, Deng S, Chen Y, Yu Y (2011) Effects of neodymium on growth and physiological characteristics of Microcystis aeruginosa. J Rare Earth 29:388–395

    Article  CAS  Google Scholar 

  • Watanabe MF, Oishi S (1985) Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl Environ Microbiol 49:1342–1344

    CAS  Google Scholar 

  • Xu J, Li M, Mak NK, Chen F, Jiang Y (2011) Triphenyltin induced growth inhibition and antioxidative responses in the green microalga Scenedesmus quadricauda. Ecotoxicology 20:73–80

    Article  CAS  Google Scholar 

  • Zeng J, Yang L, Wang W (2009) Acclimation to and recovery from cadmium and zinc exposure by a freshwater cyanobacterium Microcystis aeruginosa. Aquat Toxicol 93:1–10

    Article  CAS  Google Scholar 

  • Zhang SC, Qiu CB, Zhou Y, Jin ZP, Yang H (2011) Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology 20:337–347

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2010CB126100), the Natural Science Foundation of China (21077093), the Qianjiang talents project of technology office in Zhejiang province (2010R10033), and the Opening project of key laboratory of biogeography and bioresource in arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei Fu.

Additional information

The first two authors contributed equally to the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, H., Pan, X., Chen, J. et al. Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants. Ecotoxicology 21, 847–859 (2012). https://doi.org/10.1007/s10646-011-0845-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0845-4

Keywords

Navigation