Skip to main content
Log in

Evaluating the ameliorative effect of natural dissolved organic matter (DOM) quality on copper toxicity to Daphnia magna: improving the BLM

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Various quality predictors of seven different natural dissolved organic matter (DOM) and humic substances were evaluated for their influence on protection of Daphnia magna neonates against copper (Cu) toxicity. Protection was examined at 3 and 6 mg l−1 of dissolved organic carbon (DOC) of each DOM isolate added to moderately hard, dechlorinated water. Other water chemistry parameters (pH, concentrations of DOC, calcium, magnesium and sodium) were kept relatively constant. Predictors included absorbance ratios Abs254/365 (index of molecular weight) and Abs-octanol254/Abs-water254 (index of lipophilicity), specific absorption coefficient (SAC340; index of aromaticity), and fluorescence index (FI; index of source). In addition, the fluorescent components (humic-like, fulvic-like, tryptophan-like, and tyrosine-like) of the isolates were quantified by parallel factor analysis (PARAFAC). Up to 4-fold source-dependent differences in protection were observed amongst the different DOMs. Significant correlations in toxicity amelioration were found with Abs254/365, Abs-octanol254/Abs-water254, SAC340, and with the humic-like fluorescent component. The relationships with FI were not significant and there were no relationships with the tryptophan-like or tyrosine-like fluorescent components at 3 mg C l−1, whereas a negative correlation was seen with the fulvic-like component. In general, the results indicate that larger, optically dark, more lipophilic, more aromatic DOMs of terrigenous origin, with higher humic-like content, are more protective against Cu toxicity. A method for incorporating SAC340 as a DOM quality indicator into the Biotic Ligand Model is presented; this may increase the accuracy for predicting Cu toxicity in natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Reasi HA, Wood CM, Smith DS (2011) Physicochemical and spectroscopic properties of natural organic matter (NOM) from various sources and implications for ameliorative effects on metal toxicity to aquatic biota. Aquat Toxicol 103:179–190. doi:10.1016/j.aquatox.2011.02.015

    Article  CAS  Google Scholar 

  • Baker A (2001) Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environ Sci Technol 35:948–953. doi:10.1021/es000177t

    Article  CAS  Google Scholar 

  • Campbell PGC, Twiss MR, Wilkinson KJ (1997) Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota. Can J Fish Aquat Sci 54:2543–2554. doi:10.1139/f97-161

    Article  CAS  Google Scholar 

  • Carbonaro RF, Atalay YB, Di Toro DM (2011) Linear free energy relationships for metal-ligand complexation: bidentate binding to negatively-charged oxygen donor atoms. Geochim Cosmochim Acta 75:2499–2511. doi:10.1016/j.gca.2011.02.027

    Article  CAS  Google Scholar 

  • Chin Y, Aiken G, O’Loughlin E (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858. doi:10.1021/es00060a015

    Article  CAS  Google Scholar 

  • Curtis PJ, Schindler DW (1997) Hydrologic control of dissolved organic matter in low-order Precambrian Shield Lakes. Biogeochem 36:125–138. doi:10.1023/A:1005787913638

    Article  Google Scholar 

  • Dahlén J, Bertilsson S, Pettersson C (1996) Effects of UV-A irradiation on dissolved organic matter in humic surface waters. Environ Int 22:501–506. doi:10.1016/0160-4120(96)00038-4

    Article  Google Scholar 

  • Daly HR, Campbell IC, Hart BT (1990) Copper toxicity to Paratya australiensis: I. Influence of nitrilotriacetic acid and glycine. Environ Toxicol Chem 9:997–1006. doi:10.1002/etc.5620090805

    CAS  Google Scholar 

  • De Schamphelaere KAC, Vasconcelos FM, Tack FMG, Allen HE, Janssen CR (2004) Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23:1248–1255. doi:10.1897/03-184

    Article  Google Scholar 

  • De Schamphelaere KAC, Unamuno VIR, Tack FMG, Vanderdeelen J, Janssen CR (2005) Reverse osmosis sampling does not affect the protective effect of dissolved organic matter on copper and zinc toxicity to freshwater organisms. Chemosphere 58:653–658. doi:10.1016/j.chemosphere.2004.06.039

    Article  Google Scholar 

  • DePalma SGS, Arnold WR, McGeer JC, Dixon DG, Smith DS (2011a) Variability in dissolved organic matter fluorescence and reduced sulphur concentration in coastal marine & estuarine environments. Appl Geochem 26:394–404. doi:10.1016/j.apgeochem.2011.01.022

    Article  CAS  Google Scholar 

  • DePalma SGS, Arnold WR, McGeer JC, Dixon DG, Smith DS (2011b) Effect of dissolved organic matter and reduced sulphur concentration on copper bioavailability in coastal marine environments. Ecotoxicol Environ Saf 26:230–237. doi:10.1016/j.ecoenv.2010.12.003

    Article  Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396. doi:10.1002/etc.5620201034

    Article  CAS  Google Scholar 

  • Erickson RJ, Benoit DA, Mattson VR, Nelson HP, Leonard EN (1996) The effects of water chemistry on the toxicity of copper to fathead minnows. Environ Toxicol Chem 15:181–193. doi:10.1002/etc.5620150217

    Article  CAS  Google Scholar 

  • Eriksen RS, Mackey DJ, van Dam BN (1999) Copper speciation and toxicity in MacQuarie Harbour, Tasmania: an investigation using copper ion selective electrode. Mar Chem 74:99–113. doi:10.1016/S0304-4203(00)00117-1

    Article  Google Scholar 

  • Ertel JR, Hedges JI, Perdue EM (1984) Lignin signature of aquatic humic substances. Science 223:485–487. doi:10.1126/science.223.4635.485

    Article  CAS  Google Scholar 

  • Field AP (2005) Discovering statistics using SPSS, 2nd edn. Sage Publications, London

    Google Scholar 

  • Flemming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44:143–158. doi:10.1007/BF00228784

    Article  CAS  Google Scholar 

  • Galvez F, Donini A, Playle RC, Smith S, O’Donnell M, Wood CM (2009) A matter of potential concern: natural organic matter alters the electrical properties of fish gills. Environ Sci Technol 42:9385–9390. doi:10.1021/es8005332

    Article  Google Scholar 

  • Gjessing ET, Egeberg PK, Hikedal JT (1999) Natural organic matter in drinking water-The “NOM-typing project”, background and basic characterization of the original water samples and NOM isolates. Environ Int 25:145–159. doi:10.1016/S0160-4120(98)00119-6

    Article  CAS  Google Scholar 

  • Glover CN, Playle RC, Wood CM (2005a) Heterogeneity of natural organic matter amelioration of silver toxicity to Daphnia magna: effect of source and equilibration time. Environ Toxicol Chem 24:2934–2940. doi:10.1897/04-561R.1

    Article  CAS  Google Scholar 

  • Glover C, Pane EF, Wood CM (2005b) Humic substances influence sodium metabolism in the freshwater crustacean Daphnia magna. Physiol Biochem Zool 78:405–416. doi:10.1086/430036

    Article  CAS  Google Scholar 

  • Grosell M, Wood CM (2002) Copper uptake across rainbow trout gills: mechanisms of apical entry. J Exp Biol 205:1179–1188

    CAS  Google Scholar 

  • Grosell M, Nielsen C, Bianchini A (2002) Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol C 133:287–304. doi:10.1016/S1532-0456(02)00085-6

    Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719. doi:10.1021/es60130a004

    Article  CAS  Google Scholar 

  • Hatcher PG, Spiker EC (1988) Selective degradation of plant biomolecules. In: Frimmel FH, Christman RF (eds) Humic substances and their role in the environment. Wiley, New York, pp 59–74

    Google Scholar 

  • Kramer KJM, Jak RG, Hattum BV, Hooftman RN, Zwolsman JJG (2004) Copper toxicity in relation to surface water-dissolved organic matter: biological effects to Daphnia magna. Environ Toxicol Chem 23:2971–2980. doi:10.1897/03-501.1

    Article  Google Scholar 

  • Malcolm RL, MacCarthy P (1986) Limitations in the use of commercial humic acids in water and soil research. Environ Sci Technol 20:904–911. doi:10.1021/es00151a009

    Article  CAS  Google Scholar 

  • Mann RM, Ernste MJ, Bell RA, Kramer JR, Wood CM (2004) Evaluation of the protective effects of reactive sulfide on the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23:1204–1210. doi:10.1897/03-325

    Article  CAS  Google Scholar 

  • Marr JCA, Lipton J, Cacela D, Hansen JA, Meyer JS, Bergman HL (1999) Bioavailability and acute toxicity of copper to rainbow trout (Oncorhynchus mykiss) in the presence of organic acids simulating natural dissolved organic carbon. Can J Fish Aquat Sci 56:1471–1483. doi:10.1139/f99-089

    CAS  Google Scholar 

  • Matsuo AYO, Playle RC, Val AL, Wood CM (2004) Physiological action of dissolved organic matter in rainbow trout in the presence and absence of copper: sodium uptake kinetics and unidirectional flux rates in hard and soft water. Aquat Toxicol 70:63–81. doi:10.1016/j.aquatox.2004.07.005

    Article  CAS  Google Scholar 

  • McDonald S, Bishop AG, Prenzler PD, Robards K (2004) Analytical chemistry of freshwater humic substances. Anal Chim Acta 527:105–124. doi:10.1016/j.aca.2004.10.011

    Article  CAS  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48

    Article  CAS  Google Scholar 

  • Nadella SR, Fitzpatrick JL, Franklin N, Bucking C, Smith S, Wood CM (2009) Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel (Mytilus trossolus) and the protective effect of dissolved organic carbon. Comp Biochem Physiol C 149:340–348. doi:10.1016/j.cbpc.2008.09.001

    Google Scholar 

  • Niyogi S, Wood CM (2004) The biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192. doi:10.1021/es0496524

    Article  CAS  Google Scholar 

  • Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Dloes CG, Di Toro DM, Dwyer RI, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C 133:3–36. doi:10.1016/S1532-0456(02)00112-6

    Google Scholar 

  • Playle RC, Dixon DG, Burnison K (1993) Copper and cadmium binding to fish gills: modification by dissolved organic carbon and synthetic ligands. Can J Fish Aquat Sci 50:2667–2677. doi:10.1139/f93-290

    Article  CAS  Google Scholar 

  • Rachou J, Gagnon C, Sauvé S (2007) Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices. Environ Chem 4:90–97. doi:10.1071/EN06036

    Article  CAS  Google Scholar 

  • Richards JF, Curtis PJ, Burnison BK, Playle RC (2001) Effects of natural organic matter source on reducing metal toxicity to rainbow trout (Oncorhynchus mykiss) and on metal binding to their gills. Environ Toxicol Chem 20:1159–1166. doi:10.1002/etc.5620200604

    CAS  Google Scholar 

  • Ryan AC, Van Genderen EJ, Tomasso JR, Klaine SJ (2004) Influence of natural organic matter source on copper toxicity to larval fathead minnows (Pimephales promelas): implications for the biotic ligand model. Environ Toxicol Chem 23:1567–1574. doi:10.1897/02-476

    Article  CAS  Google Scholar 

  • Santore RC, Di Toro DM, Paquin PR, Allen HE, Meyer JS (2001) Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20:2397–2402. doi:10.1002/etc.5620201035

    CAS  Google Scholar 

  • Schwartz ML, Curtis PJ, Playle RC (2004) Influence of natural organic matter on acute copper, lead, and cadmium toxicity to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23:2889–2899. doi:10.1897/03-561.1

    Article  Google Scholar 

  • Senesi N, Miano TM, Provenzano MR, Brunetti G (1991) Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci 152:259–271

    Article  CAS  Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:572–579

    Article  CAS  Google Scholar 

  • Sun L, Perdue EM, McCarthy JF (1995) Using reverse osmosis to obtain organic matter from surface and ground waters. Wat Res 29:1471–1477. doi:10.1016/0043-1354(94)00295-I

    Article  CAS  Google Scholar 

  • Thurman EM (1985) Geochemistry of natural waters. Martinus Nijhof/Dr. W. Junk Publishers, Dordrecht

    Book  Google Scholar 

  • U.S. Environmental Protection Agency (2007) Aquatic life ambient freshwater quality criteria-Copper, 2007 revision. EPA-822-R-07-001. Office of water, Washington, DC

  • Wood CM, Matsuo AYO, Wilson RW, Gonzalez RJ, Patrick ML, Playle RC, Val AL (2003) Protection by natural blackwater against disturbances in ion fluxes caused by low pH exposure in freshwater stingrays endemic to the Rio Negro. Physiol Biochem Zool 76:12–27. doi:10.1086/367946

    Article  Google Scholar 

  • Wood CM, Al-Reasi HA, Scott DS (2011) The two faces of DOC. Aquat Toxicol. doi:10.1016/j.aquatox.2011.03.007

Download references

Acknowledgments

Hassan A. Al-Reasi is supported by a doctoral scholarship from the Government of Oman. This work was funded by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to CMW, who is supported by the Canada Research Chair program. NSERC also provided support to DSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. Al-Reasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Reasi, H.A., Scott Smith, D. & Wood, C.M. Evaluating the ameliorative effect of natural dissolved organic matter (DOM) quality on copper toxicity to Daphnia magna: improving the BLM. Ecotoxicology 21, 524–537 (2012). https://doi.org/10.1007/s10646-011-0813-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0813-z

Keywords

Navigation