Skip to main content

Advertisement

Log in

Immunotoxic effects of triclosan in the clam Ruditapes philippinarum

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The effects of Triclosan (TCS) on the immune parameters of the clam Ruditapes philippinarum were investigated after a 7-day exposure to sublethal TCS concentrations (300, 600, and 900 ng l−1). Hemocytes from controls and exposed clams were collected, and the effects of TCS on total hemocyte count (THC), hemocyte diameter and volume, uptake of the vital dye Neutral Red (an indicator of pinocytosis), lysozyme activity, and proliferation were evaluated. The cytotoxicity, which was evaluated using the lactate dehydrogenase assay, and the capability of TCS to induce DNA fragmentation, which indicated apoptosis, were also investigated. The exposure of clams to all tested TCS concentrations significantly decreased THC, whereas the highest tested TCS concentration significantly reduced the diameter and volume of hemocytes. TCS negatively affected pinocytosis and the proliferation of hemocytes, but it did not alter hemocyte lysozyme activity. TCS exerted cytotoxic effects and induced DNA fragmentation in hemocytes of R. philippinarum. Overall, these results suggest a relationship between TCS exposure and changes in the measured immune parameters and indicate immunosuppression in TCS-treated clams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009a) In vivo experiments for the evaluation of genotoxic and cytotoxic effects of Triclosan in zebra mussel hemocytes. Aquat Toxicol 91:238–244

    Article  CAS  Google Scholar 

  • Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009b) Cytotoxic and genotoxic effects of in vitro exposures to triclosan and trimethoprim on zebra mussel (Dreissena polymorpha) hemocytes. Comp Biochem Physiol C 150:50–56

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532

    Article  CAS  Google Scholar 

  • Cajaraville MP, Olabarrieta I, Marigomez I (1996) In vitro activities in mussel hemocytes as biomarkers of environmental quality: a case study in the Abra Estuary (Biscay Bay). Ecotoxicol Environ Safe 35:253–260

    Article  CAS  Google Scholar 

  • Camus L, Birkely SR, Jones MB, Børseth JF, Grøsvik BE, Gulliksen B, Lønne OJ, Regoli F, Depledge MH (2003) Biomarker responses and PAH uptake in Mya truncata following exposure to oil-contaminated sediment in an Arctic fjord (Svalbard). Sci Total Environ 308:221–234

    Article  CAS  Google Scholar 

  • Canesi L, Ciacci C, Lorusso LC, Betti M, Gallo G, Pojana G, Marcomini A (2007) Effects of Triclosan on Mytilus galloprovincialis hemocyte function and digestive gland enzyme activities: possible modes of action on non target organisms. Comp Biochem Physiol C 145:464–472

    Google Scholar 

  • Cheng TC, Rodrick GE (1974) Identification and characterization of lysozyme from the hemolymph of the soft shelled clam, Mya arenaria. Biol Bull 147:311–320

    Article  CAS  Google Scholar 

  • Chu FLE, Lund ED, Podbesek JA (2008) Effects of triclosan on the oyster parasite, Perkinsus marinus and its host, the eastern oyster, Crassostrea virginica. J Shellfish Res 27:769–773

    Article  Google Scholar 

  • Cima F, Matozzo V, Marin MG, Ballarin L (2000) Haemocytes of the clam Tapes philippinarum (Adams & Reeve, 1850): morphofunctional characterisation. Fish Shellfish Immunol 10:677–693

    Article  CAS  Google Scholar 

  • Coles JA, Farley SR, Pipe RK (1994) Effects of fluoranthene on the immunocompetence of the common marine mussel, Mytilus edulis. Aquat Toxicol 30:367–379

    Article  CAS  Google Scholar 

  • Coles JA, Farley SR, Pipe RK (1995) Alteration of the immune response of the common marine mussel Mytilus edulis resulting from exposure to cadmium. Dis Aquat Org 22:59–65

    Article  CAS  Google Scholar 

  • Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285–311

    Article  CAS  Google Scholar 

  • DeLorenzo ME, Keller JM, Arthur CD, Finnegan MC, Harper HE, Winder VL, Zdankiewicz DL (2008) Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ Toxicol 23:224–232

    Article  CAS  Google Scholar 

  • Donaghy L, Lambert C, Choi KS, Soudant P (2009) Hemocytes of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum): current knowledge and future prospects. Aquaculture 297:10–24

    Article  Google Scholar 

  • Dussault EB, Balakrishnan VK, Sverko ED, Solomon KR, Sibley PK (2008) Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ Toxicol Chem 27:425–432

    Article  CAS  Google Scholar 

  • Fair PA, Lee HB, Adams J, Darling C, Pacepavicious G, Alaee M, Bossart GD, Henry N, Muir D (2009) Occurrence of triclosan in plasma of wild Atlantic Bottlenose Dolphins (Tursiops truncatus) and in their environment. Environ Pollut 157:2248–2254

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Gatidou G, Vassalou E, Thomaidis NS (2010) Bioconcentration of selected endocrine disrupting compounds in the Mediterranean mussel, Mytilus galloprovincialis. Mar Pollut Bull 60:2111–2116

    Article  CAS  Google Scholar 

  • Gómez-Mendikute A, Exteberria A, Olabarrieta I, Cajaraville MP (2002) Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo(a)pyrene. Mar Environ Res 54:431–436

    Article  Google Scholar 

  • Gopalakrishnan S, Thilagam H, Huang W-B, Wang K-J (2009) Immunomodulation in the marine gastropod Haliotis diversicolor exposed to benzo(a)pyrene. Chemosphere 75:389–397

    Article  CAS  Google Scholar 

  • Hauton C, Hawkins LE, Hutchinson S (1998) The use of the neutral red retention assay to examine the effects of temperature and salinity on haemocytes of the European flat oyster Ostrea edulis (L). Comp Biochem Physiol B 119:619–623

    Article  Google Scholar 

  • Higgins CP, Paesani ZJ, Chalew TEA, Halden RU, Hundal LS (2011) Persistence of triclocarban and triclosan in soils after land application of biosolids and bioaccumulation in Eisenia foetida. Environ Toxicol Chem 30:556–563

    Article  CAS  Google Scholar 

  • Jones RD, Jampani HB, Newman JK, Lee AS (2000) Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28:184–196

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Kookana RS, Ying G–G, Waller NJ (2011) Triclosan: its occurrence, fate and effects in the Australian environment. Water Sci Technol 63:598–604

    Article  CAS  Google Scholar 

  • Lopez C, Carballal MJ, Azevedo C, Villalba A (1997) Enzyme characterisation of the circulating haemocytes of the carpet shell clam, Ruditapes decussatus (Mollusca: Bivalvia). Fish Shellfish Immunol 7:595–608

    Article  Google Scholar 

  • Lund ED, Soudant P, Chu FLE, Harvey E, Bolton S, Flowers A (2005) Effects of triclosan on growth, viability and fatty acid synthesis of the oyster protozoan parasite Perkinsus marinus. Dis Aquat Org 67:217–224

    Article  CAS  Google Scholar 

  • Martin SJ, Green DR, Cotter TG (1994) Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem Sci 19:26–30

    Article  CAS  Google Scholar 

  • Matozzo V, Marin MG (2005) 4-Nonylphenol induces immunomodulation and apoptotic events in the clam Tapes philippinarum. Mar Ecol Prog Ser 285:97–106

    Article  CAS  Google Scholar 

  • Matozzo V, Ballarin L, Pampanin DM, Marin MG (2001) Effects of copper and cadmium exposure on functional responses of hemocytes in the clam, Tapes philippinarum. Arch Environ Contam Toxicol 41:163–170

    Article  CAS  Google Scholar 

  • Matozzo V, Ballarin L, Marin MG (2002) In vitro effects of tributyltin on functional responses of haemocytes in the clam Tapes philippinarum. Appl Organomet Chem 16:169–174

    Article  CAS  Google Scholar 

  • Matozzo V, Da Ros L, Ballarin L, Meneghetti F, Marin MG (2003) Functional responses of haemocytes in the clam Tapes philippinarum from the Lagoon of Venice: fishing impact and seasonal variations. Can J Fish Aquat Sci 60:949–958

    Article  Google Scholar 

  • Matozzo V, Marin MG, Cima F, Ballarin L (2008) First evidence of cell division in circulating haemocytes from the Manila clam Tapes philippinarum. Cell Biol Int 32:865–868

    Article  CAS  Google Scholar 

  • Matozzo V, Monari M, Foschi J, Cattani O, Serrazanetti GP, Marin MG (2009) First evidence of altered immune responses and resistance to air exposure in the clam Chamelea gallina exposed to benzo(a)pyrene. Arch Environ Contam Toxicol 56:479–488

    Article  CAS  Google Scholar 

  • Oliver LM, Fisher WS (1999) Appraisal of prospective bivalve immunomarkers. Biomarkers 4:510–530

    Article  CAS  Google Scholar 

  • Orvos DR, Versteeg DJ, Inauen J, Capdeville M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of Triclosan. Environ Toxicol Chem 21:1338–1349

    Article  CAS  Google Scholar 

  • Parry HE, Pipe RK (2004) Interactive effects of temperature and copper on immunocompetence and disease susceptibility in mussels (Mytilus edulis). Aquat Toxicol 69:311–325

    Article  CAS  Google Scholar 

  • Pipe RK, Coles JA (1995) Environmental contaminants influencing immune function in marine bivalve molluscs. Fish Shellfish Immunol 5:581–595

    Article  Google Scholar 

  • Pipe RK, Coles JA, Carissan FMM, Ramanathan K (1999) Copper induced immunomodulation in the marine mussel Mytilus edulis. Aquat Toxicol 46:43–54

    Article  CAS  Google Scholar 

  • Reiss R, Mackay N, Habig C, Griffin J (2002) An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the U.S. Environ Toxicol Chem 22:2483–2492

    Article  Google Scholar 

  • Renwrantz L (1990) Internal defence system of Mytilus edulis. In: Stefano GB (ed) Studies in neuroscience: neurobiology of Mytilus edulis. Manchester University Press, Manchester, pp 256–275

    Google Scholar 

  • Stasinakis AS, Gatidou G, Mamais D, Thomaidis NS, Lekkas TD (2008) Occurrence and fate of endocrine disrupters in greek sewage treatment plants. Water Res 42:1796–1804

    Article  CAS  Google Scholar 

  • St-Jean SD, Pelletier E, Courtenay SC (2002) Hemocyte functions and bacterial clearance affected in vivo by TBT and DBT in the blue mussel Mytilus edulis. Mar Ecol Prog Ser 236:163–178

    Article  CAS  Google Scholar 

  • Wootton EC, Dyrynda EA, Pipe RK, Ratcliffe NA (2003) Comparisons of PAH-induced immunomodulation in three bivalve molluscs. Aquat Toxicol 65:13–25

    Article  CAS  Google Scholar 

  • Wu JL, Lam NP, Marten D, Kettrup A, Cai ZW (2007) Triclosan determination in water related to wastewater treatment. Talanta 72:1650–1654

    Article  CAS  Google Scholar 

  • Xie Z, Ebinghaus R, Floser G, Caba A, Ruck W (2008) Occurrence and distribution of triclosan in the German Bight (North Sea). Environ Pollut 156:1190–1195

    Article  CAS  Google Scholar 

  • Zuckerbraun HL, Babich H, May R, Sinensky MC (1998) Triclosan: cytotoxicity, mode of action, and induction of apoptosis in human gingival cells in vitro. Eur J Oral Sci 106:628–636

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the University of Padova to Dr. V. Matozzo. Research Project: Immunotoxicity, neurotoxicity and estrogenicity of pharmaceuticals and personal care products in bivalve mollusks (University-funded research project 2009, CPDA095545).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Matozzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matozzo, V., Costa Devoti, A. & Marin, M.G. Immunotoxic effects of triclosan in the clam Ruditapes philippinarum . Ecotoxicology 21, 66–74 (2012). https://doi.org/10.1007/s10646-011-0766-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0766-2

Keywords

Navigation