Advertisement

Ecotoxicology

, 20:885 | Cite as

Genotoxic effects of the fungicide thiophanate-methyl on Podarcis sicula assessed by micronucleus test, comet assay and chromosome analysis

  • T. CapriglioneEmail author
  • S. De Iorio
  • F. Gay
  • A. Capaldo
  • M. C. Vaccaro
  • M. A. Morescalchi
  • V. Laforgia
Article

Abstract

The increasing use of pesticides in modern agriculture has raised the need to evaluate their potential threat to animal and human health. In the present study, the genotoxic effects of environmentally relevant exposure to the fungicide thiophanate-methyl (TM) were assessed in the lizard Podarcis sicula (Reptilia, Lacertidae) using micronucleus test, chromosome aberration analysis and single-cell gel electrophoresis (comet) assay. The number of micronuclei increased significantly with exposure time in lizard specimens exposed to 1.5% TM for 30–40 days. In situ hybridization with the specific HindIII centromeric satellite was positive in 18.7% of the micronuclei observed, suggesting an aneugenic effect of TM during mitosis. DNA damage, evaluated by the comet assay, documented a significant gain in comet length in relation to exposure time that was paralleled by a reduction in head size. Finally, cytogenetic analysis showed a significant increase in chromosome aberrations in exposed animals compared with controls. Our data suggest that long-term TM exposure induces a genomic damage that is positively correlated to exposure time. If such genotoxic effects arise so clearly in an ectothermal vertebrate, such as P. sicula, prolonged exposure TM must be considered as a cytogenetic hazard.

Keywords

Micronucleus test Comet assay Environmental stress Genotoxicity Thiophanate-methyl Podarcis sicula 

Notes

Acknowledgments

This work was supported by the Italian M.U.R.S.T. (Ministry of the University and Scientific and Technological Research)-PRIN 2003.

References

  1. Adams MR, Moss MO (2008) Food Microbiology. Royal Society of Chemistry, CambridgeGoogle Scholar
  2. Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 323:121–135Google Scholar
  3. Andò S, Panno ML, Ciarcia G, Imbrogno E, Buffon M et al (1990) Plasma sex hormone concentrations during the reproductive cycle in the male lizard, Podarcis sicula. J Reprod Fertil 90:353–960CrossRefGoogle Scholar
  4. Barale R, Scapoli C, Meli C, Casini D, Minunni M, Marrazzini A, Loprieno N, Barrai I (1993) Cytogenetic effects of benzimidazoles in mouse bone marrow. Mutat Res 300(1):15–28CrossRefGoogle Scholar
  5. Bologna MA, Capula M, Carpaneto GM (2000) Anfibi e rettili del Lazio, Palombi, RomaGoogle Scholar
  6. Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res 543(3):251–272CrossRefGoogle Scholar
  7. Bradshaw VA, McEntee K (1989) DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol Gen Genet 218:465–474CrossRefGoogle Scholar
  8. Bryan AM, Olafsson PG, Stone WB (1987) Disposition of low and high environmental concentrations of PCBs in snapping turtle tissues. Bull Environ Contam Toxicol 38:1000–1005CrossRefGoogle Scholar
  9. Buschini A, Martino A, Gustavino B, Monfrinotti M, Poli P, Rossi C, Santoro M, Dorr AJM, Rizzoni M (2004) Comet assay and micronucleus test in circulating erytrocytes of Cyprinus carpio specimens esposed in situ to lake waters treated with disinfectants for potabilization. Mutat Res 557:119–129Google Scholar
  10. Canton JH (1976) The toxicity of benomyl, thiophanate-methyl, and BCM to four freshwater organisms. Bull Environ Contam Toxicol 16:214–218CrossRefGoogle Scholar
  11. Capaldo A, Gay F, De Falco M, Virgilio F, Valiante S, Laforgia V, Varano L (2007) The newt Triturus carnifex as a model for monitoring the ecotoxic impact of the fungicide thiophanate methyl: adverse effects on the adrenal gland. Comp Biochem Physiol 143:86–93Google Scholar
  12. Capriglione T, Odierna G, Caputo V, Canapa A, Olmo E (2002) Characterization of a Tc1-like transposon in the Antarctic ice-fish, Chionodraco hamatus. Gene 295:193–198CrossRefGoogle Scholar
  13. Clark Dr, Bickham JW, Baker L, Cowman DF (2000) Environmental contaminants in Texas, USA, wetland reptiles: evaluation using blood samples. Environ Toxicol Chem 19:2259–2265CrossRefGoogle Scholar
  14. De Falco M, Sciarrillo R, Capaldo A, Russo T, Gay F, Valiante S, Varano L, Laforgia V (2007) The Effects of the Fungicide Methyl Thiophanate on Adrenal Gland Morphophysiology of the Lizard, Podarcis sicula. Arch Environ Contam Toxicol 53:241–248CrossRefGoogle Scholar
  15. Ergene S, Çelik A, Çavaş T, Kaya F (2007) Genotoxic biomonitoring study of population residing in pesticide contaminated regions in Göksu Delta: micronucleus, chromosomal aberrations and sister chromatid exchanges. Environ Int 33:877–885CrossRefGoogle Scholar
  16. Fuchs A, Van Der Berg GA, Davidse LCA (1972) Comparison of benomyl and thiophanates with respect to some chemical and systemic fungitoxic characteristics. Pest Biochem Physiol 2(2):191–205CrossRefGoogle Scholar
  17. Gedik CM, Even SWB, Collins AR (1992) Single cell gel electrophoresis applied to analysis of UV-C damage and its repair in human cell. Int J Radiat Biol 62:313–320CrossRefGoogle Scholar
  18. Gorman CG (1969) New chromosome data of 12 species of lacertid lizards. J Herpetol 3:49–54CrossRefGoogle Scholar
  19. Guerrero AA, Gamero MC, Trachana V, Fütterer A, Pacios-Bras C, Díaz-Concha NP, Cigudosa JC, Martínez-A C, van Wely KH (2010) Centromere-localized breaks indicate the generation of DNA damage by the mitotic spindle. Proc Natl Acad Sci USA 107(9):4159–4164CrossRefGoogle Scholar
  20. Hall RJ, Clark DR Jr (1982) Responses of the iguanid lizard Anolis carolinensis to four organophosphorus pesticides. Environ Pollut 28:45–52CrossRefGoogle Scholar
  21. Hall RJ, Henry PFP (1992) Assessing effects of pesticides on amphibians and reptiles: status and needs. Herpetol J 2:65–71Google Scholar
  22. Hashimoto Y, Mori T, Ohnuma N, Noguchi T (1972) Some pharmacologic properties of a new fungicide, thiophanate–methyl. Toxicol Appl Pharmacol 23:616–622CrossRefGoogle Scholar
  23. He X, Asthana S, Sorger PK (2000) Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101:763–775CrossRefGoogle Scholar
  24. Hrelia P, Fimognari C, Vigagni F, Maffei F, Cantelli-Forti G (1996) A cytogenetic approach to the study of genotoxic effects of fungicides: an in vitro study in lymphocyte cultures with thiophanate-methyl. ATLA 24:597–601Google Scholar
  25. In den Bosch HA, Odierna G, Aprea G, Barucca M, Canapa A, Capriglione T, Olmo E (2003) Karyological and genetic variation in Middle Eastern lacertid lizards, Lacerta laevis and the Lacerta kulzeri complex: a case of chromosomal allopatric speciation. Chromosome Res 11:165–178CrossRefGoogle Scholar
  26. Kirsch-Volders M, Elhajouji A, Cundari E, Hummelen PV (1997) The in vitro micronucleus test: a multi-endpoint assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss and non-disjunction. Mutat Res 392:19–30Google Scholar
  27. Landolt ML, Kokan RM (1983) Fish cell cytogenetics: a measure of genotoxic effects of environmental pollutants. In: Nriagu JO (ed) Aquatic toxicology. Wiley, New York, pp 335–352Google Scholar
  28. Li J, Liu X, Ren C, Li J, Sheng F, Zhide Hu Z (2009) In vitro study on the interaction between thiophanate methyl and human serum albumin. J Photochem Photobiol 94(B):158–163Google Scholar
  29. Licht LE, Grant KP (1997) The effects of ultraviolet radiation on the biology of Amphibians. Am Zool 37:140–147Google Scholar
  30. Makita T, HashimotoY NoguchiT (1973) Mutagenic, cytogenetic and teratogenetic studies on thiophanate methyl. Toxicol Appl Pharmacol 24(2):206–215CrossRefGoogle Scholar
  31. Manzo C, Zerani M, Gobetti A, Di Fiore MM, Angelini F (1994) Is corticosterone involved in the reproductive processes of the male lizard, Podarcis s. sicula? Horm Behav 28:117–129CrossRefGoogle Scholar
  32. Maranghi F, Macrì C, Ricciardi C, Stazi AV, Rescia M, Mantovani A (2003) Histological and histomorphometric alterations in thyroid MT Effects on Podarcis sicula Adrenal Glands 247 and adrenals of CD rat pups exposed in utero to methyl thiophanate. Reprod Toxicol 17:617–623CrossRefGoogle Scholar
  33. Martinez-Lopez E, Sousa AR, Marìa-Mojica P, Gomez-Ramirez P et al (2010) Blood δ-ALAD, lead and cadmium concentrations in spur-thighed tortoises (Testudo graeca) from Southeastern Spain and Northern Africa. Ecotoxicology 19:670–677CrossRefGoogle Scholar
  34. Matson CL, Palatnikov G, Islamzadeh A, Mcdonald TJ, Autenrieth RL, Donnelly KC, Bickham JW (2005) Chromosomal damage in two species of aquatic turtles (Emys orbicularis and Mauremys caspica) inhabiting sites in Azerbaijan. Ecotoxicology 14:513–525CrossRefGoogle Scholar
  35. Matson CL, Gillespie AM, McCarthy C, Mcdonald TJ, Bickham JW, Sullivan R, Donnelly KC (2009) Wildlife Toxicology: biomarkers of genotoxic exposures at hazardous waste site. Ecotoxicology 18:886–898CrossRefGoogle Scholar
  36. Noguchi T, Hashimoto Y (1970) Toxicological evaluation of thiophanate methyl. Unpublished report from the Nisso Institute for Life Sciences submitted by Nippon Soda Co. LtdGoogle Scholar
  37. Paquin CE, Williamson VM (1984) Temperature effects on the rate of Ty transposition. Science 226:53–55CrossRefGoogle Scholar
  38. Russo C, Rocco L, Morescalchi MA, Stingo V (2004) Assessment of environmental stress by micronucleus test and the Comet assay on the genome of teleost populations from two natural environments. Ecotoxicol Environ Saf 57:168–174CrossRefGoogle Scholar
  39. Sailaja N, Chandrasekhar M, Rekhadevi PV, Mahboob M, Rahman MF, Vuyyuri Saleha B, Danadevi K, Hussain SA, Paramjit Grover (2006) Genotoxic evaluation of workers employed in pesticide production. Mutat Res 609:74–80Google Scholar
  40. Saquib Q, Al-Khedhairy-Abdulaziz A, Al-Arifi S, Dhawan A, Musarrat J (2009) Assessment of methyl thiophanate–Cu (II) induced DNA damage in human lymphocytes. Toxicol In Vitro 23:848–854CrossRefGoogle Scholar
  41. Sciarrillo R, De Falco M, Virgilio F, Laforgia V, Capaldo A, Gay F, Valiante S, Varano L (2008) Morphological and functional changes in the thyroid gland of methyl thiophanate-injected lizards, Podarcis sicula. Arch Environ Contam Toxicol 55:254–261CrossRefGoogle Scholar
  42. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefGoogle Scholar
  43. Sparling DW, Matson C, Bickham J, Doelling-Brown P (2006) Toxicity of glyphosate as Glypro and LI700 to red- eared slider (Trachemys scripta elegans) embryos and early hatchlings. Environ Toxicol Chem 25:2768–2774CrossRefGoogle Scholar
  44. Strunjak-Perovic I, Lisicic D, Coz-Rakovac R, Topic Popovic N, Jadan N, Benkovic V, Tadic Z (2010) Evaluation of micronucleus and erythrocytic nuclear abnormalities in Balkan whip snake Hierophis gemonensis. Ecotoxicology 19:1460–1465CrossRefGoogle Scholar
  45. Talent LG, Dumont JN, Bantle JA, Janz DM, Talent SG (2002) Evaluation of western fence lizards (Sceloporus occidentalis) and eastern fence lizards (Sceloporus undulates) as laboratory reptile models for toxicological investigations. Environ Toxicol Chem 21(5):899–905Google Scholar
  46. Tice RR (1995) The single cell gel/comet assay: a microgel electrophoretic technique for the detection of DNA damage and repair in individual cells. In: Philips DH, Venitt S (eds) Environmental mutagenesis. Bios Scientific Publishers, Oxford, pp 315–339Google Scholar
  47. Tice RR, Argurell E, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) The single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221CrossRefGoogle Scholar
  48. Traina ME, Fazzi P, Macrì C, Ricciardi C, Stazi AV, Urbani E, Mantovani A (1998) In vivo studies on possible adverse effects on reproduction of the fungicide methyl thiophanate. J Appl Toxicol 18:241–248CrossRefGoogle Scholar
  49. Yunis JJ, Soreng AL (1984) Constitutive fragile sites and cancer. Science 226:1199–1204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • T. Capriglione
    • 1
    Email author
  • S. De Iorio
    • 2
  • F. Gay
    • 1
  • A. Capaldo
    • 1
  • M. C. Vaccaro
    • 1
  • M. A. Morescalchi
    • 2
  • V. Laforgia
    • 1
  1. 1.Department of Biological Sciences, Faculty of SciencesUniversity of Naples “Federico II”NaplesItaly
  2. 2.Department of Life SciencesSecond University of NaplesCasertaItaly

Personalised recommendations