Skip to main content

Advertisement

Log in

Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Tigriopus japonicus Mori has been recognized as a good model for toxicological testing of marine pollutants. Recently, a large number of genes have been identified from this copepod, and their mRNA expression has been studied independently against exposure to marine pollutants; however, biochemical-response information is relatively scarce. The response of T. japonicus to nickel (Ni) additions was examined under laboratory-controlled conditions in 12 days exposure. Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), acetylcholinesterase (AchE), reduced glutathione (GSH), the ratio of reduced to oxidized glutathione (GSH/GSSG) and metallothionein (MT) were analyzed for Ni treatments (0, 0.125, 0.25, 0.75 and 3.0 mg/L) after 1, 4, 7 and 12 days. The thiobarbituric reactive species assay was used to evaluate lipid peroxidation (LPO) level in copepods after exposure. The results showed that Ni remarkably affected the biochemical parameters (SOD, GPx, GST, GSH, and GSH/GSSG) after certain exposure durations. However, the copepod’s LPO level was significantly decreased under metal treatments after exposure, hinting that the factors involved in LPO might not significantly depend on the operations and functions in the antioxidant system. Ni exhibited the neurotoxicity to copepods, because its use obviously elevated AchE activity. During exposure, Ni initially displayed an inhibition effect but induced MT synthesis in T. japonicus by day 12, probably being responsible for metal detoxification. Thus, Ni had intervened in the detoxification process and antioxidant system of this copepod, and it could be used as a suitable bioindicator of Ni exposure via measuring SOD, GPx, GST, and MT as biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  CAS  Google Scholar 

  • Amiard-Triquet C, Altmann S, Amiard JC, Ballan-Dufrancais C, Baumard P, Budzinski H, Crouzet C, Garrigues P, His E, Jeantet AY, Menasria R, Mora P, Mouneyrac C, Narbonne JF, Pavillon JF (1998) Fate and effects of micropollutants in the Gironde estuary, France: a multidisciplinary approach. Hydrobiologia 373(374):259–279

    Article  Google Scholar 

  • Ara K, Nojima K, Hiromi J (2002) Acute toxicity of Bunker A and C refined oils to the marine harpacticoid copepod Tigriopus japonicus Mori. Bull Environ Contam Toxicol 69:104–110

    Article  CAS  Google Scholar 

  • Barata C, Lekumberri I, Vila-Escalé M, Prat N, Porte C (2005a) Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from Llobregat river basin (NE Spain). Aquat toxicol 74:3–19

    Article  CAS  Google Scholar 

  • Barata C, Varo I, Navarro JC, Arun S, Porte C (2005b) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol C 140:75–86

    Google Scholar 

  • Barka S, Pavillon JF, Amiard JC (2001) Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis. Comp Biochem Physiol C 128:479–493

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive assay of protein utilizing the principle of dye binding. Analyt Biochem 772:248–264

    Article  Google Scholar 

  • Brown DA, Parsons TR (1978) Relationship between cytoplasmic distribution of mercury and toxic effects to zooplankton and chum salmon (Oncorhynchus keta) exposed to mercury in a controlled ecosystem. J Fish Res Board Can 35:800–884

    Google Scholar 

  • Chakrabarti SK, Bai C (1999) Role of oxidative stress in nickel chloride-induced cell injury in rat renal cortical slices. Biochem Pharmacol 58:1501–1510

    Article  CAS  Google Scholar 

  • Chau YK, Kulikovsky-Cordeiro OTR (1995) Occurrence of nickel in the Canadian environment. Environ Rev 3:95–117

    CAS  Google Scholar 

  • Chen CY, Wang YF, Lin YH, Yen SF (2003) Nickel-induced oxidative stress and effect of antioxidants in human lymphocytes. Arch Toxicol 77:123–130

    Article  CAS  Google Scholar 

  • Coogan TP, Latta DM, Snow ET, Costa M (1989) Toxicity and carcinogenicity of nickel compounds. Crit Rev Toxicol 19:341–384

    Article  CAS  Google Scholar 

  • Correia AD, Lima G, Costa MH, Livingstone DR (2002a) Studies on biomarkers of copper exposure and toxicity in the marine amphipod Gammarus locusta (Crustacea). I: induction of metallothionein and lipid peroxidation. Biomarkers 7:422–437

    Article  CAS  Google Scholar 

  • Correia AD, Livingstone DR, Costa MH (2002b) Effects of water-borne copper on metallothionein and lipid peroxidation in the marine amphipod Gammarus locusta. Mar Environ Res 54:357–360

    Article  CAS  Google Scholar 

  • Couillard Y, Campbell PGC, Tessier A, Pellerinmassicotte J, Auclair A (1995) Field transplantation of a fresh-water bivalve Pyganodon grandis, across a metal contamination gradient. Temporal changes in metallothionein and metal (Cd, Cu and Zn) concentrations in soft tissues. Can J Fish Aquat Sci 52:690–702

    Article  CAS  Google Scholar 

  • De Luca G, Gugliotta T, Parisi G, Romano P, Geraci A, Romano O, Scuteri A, Romano L (2007) Effects of nickel on human and fish blood cells. Biosci Rep 27:265–273

    Article  CAS  Google Scholar 

  • Durou C, Poirier L, Amiard JC, Budzinski H, Gnassia-Barelli M, Lemenach K, Peluhet L, Mouneyrac C, Roméo M, Amiard-Triquet C (2007) Biomonitoring in a clean and a multi-contaminated estuary based on biomarkers and chemical analyses in the endobenthic worm Nereis diversicolor. Environ Pollut 148:445–458

    Article  CAS  Google Scholar 

  • Eisler R (1998) Nickel hazards to fish, wildlife, and invertebrates: a synoptic review. US Geological Survey, Biological Resources Division, Biological Science Report, 1998–2001

  • Ellman G, Courtney K, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Elumalai M, Antunes C, Guilhermino L (2002) Single metals and their mixtures on selected enzymes of Carcinus maenas. Water Air Soil Pollut 141:273–280

    Article  CAS  Google Scholar 

  • Falfushynska HI, Stolyar OB (2009) Responses of biochemical markers in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotoxicol Environ Saf 72:729–736

    Article  CAS  Google Scholar 

  • Forget J, Pavillon JF, Beliaeff B, Bocquené G (1999) Joint action of pollutant combinations (pesticides and metals) on survival (LC50 values) and acetylcholinesterase activity of Tigriopus brevicornis (Copepoda Harpacticoida). Environ Toxicol Chem 18:912–918

    Article  CAS  Google Scholar 

  • Forget J, Beliaeff B, Bocquené G (2003) Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquat Toxicol 62:195–204

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2007) Effect of nickel on ROS content and antioxidant enzyme activities in wheat leaves. BioMetals 20:27–36

    Article  CAS  Google Scholar 

  • Galgani F, Bocquene G (1990) In vitro inhibition of acetylcholinesterase from four marine species by organophosphates and carbamates. Bull Environ Contam Toxicol 45:243–249

    Article  CAS  Google Scholar 

  • George SG, Burgess D, Leaver M, Frerichs N (1992) Metallothionein induction in cultured fibroblast and liver of a marine flatfish, the turbot Scopthalmus maximus. Fish Physiol Biochem 10:43–54

    Article  CAS  Google Scholar 

  • Gopal R, Narmada S, Vijayakumar R, Jaleel CA (2009) Chelating efficacy of CaNa2EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation. CR Biol 332:685–696

    Article  CAS  Google Scholar 

  • Haber LT, Erdreicht L, Diamond GL, Maier AM, Ratney R, Zhao Q, Dourson ML (2000) Hazard identification and dose response of inhaled nickel-soluble salts. Regul Toxicol Pharmacol 31:210–230

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hfaiedh N, Allagui MS, Hfaiedh M, Feki AE, Zourgui L, Croute F (2008) Protective effect of cactus (Opuntia ficus indica) cladode extract upon nickel-induced toxicity in rats. Food Chem Toxicol 46:3759–3763

    Article  CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

  • Huang X, Zhuang Z, Frenkel K, Klein CB, Costa M (1994) The role of nickel and nickel-mediated reactive oxygen species in the mechanism of nickel carcinogenesis. Environ Health Perspect 102:281–284

    Article  CAS  Google Scholar 

  • Hussain T, Shukla G, Chandra SV (1987) Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharm Toxicol 60:355–359

    Article  CAS  Google Scholar 

  • Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic-reticulum. Science 57:1496–1502

    Article  Google Scholar 

  • Jemec A, Drobne D, Tisler T, Trebse P, Ros M, Sepcić K (2007) The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test. Comp Biochem Physiol C 144:303–309

    Google Scholar 

  • Jung S-O, Lee Y-M, Park T-J, Park HG, Hagiwara A, Leung KMY, Dahms H-U, Lee W, Lee J-S (2006) The complete mitochondrial genome of the intertidal copepod Tigriopus sp. (Copepoda, Harpactidae) from Korea and phylogenetic considerations. J Exp Mar Biol Ecol 333:251–262

    Article  CAS  Google Scholar 

  • Kasprzak KS, Sunderman FW Jr, Salnikow K (2003) Nickel carcinogenesis. Mutat Res 533:67–97

    CAS  Google Scholar 

  • Kodipura D, Balakrishna S, Thimappa R (2004) Nickel-induced oxidative stress in testis of mice: evidence of DNA damage and genotoxic effects. J Androl 25:996–1003

    Google Scholar 

  • Kwok KWH, Leung KMY (2005) Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity. Mar Pollut Bull 51:830–837

    Article  CAS  Google Scholar 

  • Lee KW, Raisuddin S, Hwang DS, Park HG, Lee J-S (2007a) Acute toxicities of trace metals and common xenobiotics to the marine copepod Tigriopus japonicus: evaluation of its use as a benchmark species for routine ecotoxicity tests in Western Pacific coastal regions. Environ Toxicol 22:532–538

    Article  CAS  Google Scholar 

  • Lee Y-M, Lee KW, Seo JS, Park H, Park HG, Ahn IY, Raisuddin S, Lee J-S (2007b) Sequence, biochemical characteristics and expression of a novel sigma class of glutathione S-transferase of intertidal copepod, Tigriopus japonicus with a possible role in antioxidant defense. Chemosphere 69:893–902

    Article  CAS  Google Scholar 

  • Leung KMY, Furness RW (1999) Induction of metallothionein in dogwhelk Nucella lapillus during and after exposed to cadmium. Ecotoxicol Environ Saf 43:156–164

    Article  CAS  Google Scholar 

  • Marcial HS, Hagiwara A, Snell TW (2003) Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicus. Environ Toxicol Chem 22:3025–3030

    Article  CAS  Google Scholar 

  • Mas A, Holt D, Webb M (1985) The acute toxicity and teratogenicity of nickel in pregnant rats. Toxicology 35:47–57

    Article  CAS  Google Scholar 

  • Matozzo V, Tomei A, Marin MG (2005) Acetylcholinesterase as a biomarker of exposure to neurotoxic compounds in the clam Tapes philippinarum from the Lagoon of Venice. Mar Pollut 50:1686–1693

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  Google Scholar 

  • Misra M, Rodriguez RE, Kasprzak KS (1990) Nickel induced lipid peroxidation in the rate: correlation with nickel effect on antioxidant defense systems. Toxicology 64:1–17

    Article  CAS  Google Scholar 

  • Misra M, Rodriguez RE, North SL, Kasprzak KS (1991) Nickel-induced renal lipid peroxidation in different strains of mice: concurrence with nickel effect on antioxidant defense systems. Toxicol Lett 58:121–133

    Article  CAS  Google Scholar 

  • Moreira SM, Guilhermino L (2005) The use of Mytilus galloprovincialis and acetylcholinesterase glutathione S-transferases activities as biomarkers of environmental contamination along the northwest Portuguese coast. Environ Monit Assess 105:309–325

    Article  CAS  Google Scholar 

  • Mouneyrac C, Amiard JC, Amiard-Triquet C, Cottier A, Rainbow PS, Smith BD (2002) Partitioning of accumulated trace metals in the talitrid amphipod crustacean Orchestia gammarellus: a cautionary tale on the use of metaollothiionein-like proteins as biomarkers. Aquat Toxicol 57:225–242

    Article  CAS  Google Scholar 

  • Najimi S, Bouhaimi A, Daubèze M, Zekhini A, Pellerin J, Narbonne JF, Moukrim A (1997) Use of Acetylcholinesterase in Perna perna and Mytilus galloprovincialis as a biomarker of pollution in Agadir Marine Bay (South of Morocco). Bull Environ Contam Toxicol 58:901–908

    Article  CAS  Google Scholar 

  • Nielsen FH, Shuler TR, Mclead TG, Zimmerman TJ (2001) Nickel influences iron metabolism through physiologic, pharmacologic and toxicologic mechanisms in rats. J Nutr 14:1280–1288

    Google Scholar 

  • Nigam D, Shukla GS, Agarwal AK (1999) Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney. Toxicol Lett 106:151–157

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Ozmen M, Sener S, Mete A, Kukucbay H (1998) In vitro and in vivo acetylcholinesterase-inhibiting effect of new classes of organophosphorus compounds. Environ Toxicol Chem 18:241–246

    Article  Google Scholar 

  • Pari L, Prasath A (2008) Efficacy of caffeic acid in preventing nickel induced oxidative damage in liver of rats. Chem-Biol Interact 173:77–83

    Article  CAS  Google Scholar 

  • Paris-Palacios S, Biagianti-Risbourg S, Vernet G (2003) Metallothionein induction related to hepatic structural perturbations and antioxidative defenses in roach (Rutilus rutilus) exposed to the fungicide procymidone. Biomarkers 8:128–141

    Article  CAS  Google Scholar 

  • Prophete C, Carlson EA, Li Y, Duffy J, Steinetz B, Lasano S, Zelikoff JT (2006) Effects of elevated temperature and nickel pollution on the immune status of Japanese medaka. Fish Shellfish Immun 21:325–334

    Article  CAS  Google Scholar 

  • Ptashynski MD, Pedlar RM, Evans RE, Wautier KG, Baron CB, Klaverkamp JF (2001) Accumulation, distribution, and toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis) and lake trout (Salvelinus namaycush). Comp Biochem Physiol C 130:145–162

    Article  CAS  Google Scholar 

  • Ptashynski MD, Pedlar RM, Evans RE, Baron CB, Klaverkamp JF (2002) Toxicology of dietary nickel in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 58:229–247

    Article  CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  Google Scholar 

  • Rainbow PS (2006) Trace metal bioaccumulation: model, metabolic availability and toxicity. Environ Int 30:67–78

    Google Scholar 

  • Raisuddin S, Kwok KWH, Leung KMY, Schlenk D, Lee J-S (2007) The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol 83:161–173

    Article  CAS  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2003) Invertebrate zoology, a functional evolutionary approach, 7th edn. Brooks/Cole-Thomson Learning, Belmont

    Google Scholar 

  • Scheuhammer AM, Cherian MG (1991) Quantification of metallothionein by silver saturation. Methods Enzymol 205:78–83

    Article  CAS  Google Scholar 

  • Seo JS, Lee Y-M, Park HG, Lee J-S (2006a) The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene (Hsp20) enhances thermotolerance of transformed Escherichia coli. Biochem Biophys Res Commun 340:901–908

    Article  CAS  Google Scholar 

  • Seo JS, Park T-J, Lee Y-M, Park HG, Yoon Y-D, Lee J-S (2006b) Small heat shock protein 20 gene (Hsp20) of the intertidal copepod Tigriopus japonicus as a possible biomarker for exposure to endocrine disruptors. Bull Environ Contam Toxicol 76:566–572

    Article  CAS  Google Scholar 

  • Seo JS, Lee K-W, Rhee J-S, Hwang D-S, Lee Y-M, Park HG, Ahn I-Y, Lee J-S (2006c) Environmental stressors (salinity, heavy metals H2O2) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus. Aquat Toxicol 80:281–289

    Article  CAS  Google Scholar 

  • Sidhu P, Garg ML, Dhawan DK (2004) Protective role of zinc in nickel induced hepatotoxicity in rats. Chem Biol Interact 150:199–209

    Article  CAS  Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921

    Article  CAS  Google Scholar 

  • Stinson TJ, Jaw S, Jeffery EH, Plewa M (1992) The relationship between nickel chloride-induced peroxidation and DNA strand breakage in rat liver. Toxicol Appl Pharmacol 117:98–103

    Article  CAS  Google Scholar 

  • Stohs ST, Bagchi D (1995) Oxidative mechanisms in the toxicity of metals. Free Radic Biol Med 18:321–326

    Article  CAS  Google Scholar 

  • Strubelt O, Kremer J, Tilse A, Keogh J, Peutz R, Younes M (1996) Comparative studies on the toxicity of mercury, cadmium and copper toward the isolated perfused rat liver. J Toxicol Environ Health 47:267–283

    Article  CAS  Google Scholar 

  • Viarengo A, Moore MN, Mancinelli G, Mazzucotelli A, Pipe RK, Farrar SV (1987) Metallothioneins and lysosomes in metal toxicity and homeostasis in marine mussels: the effect of the cadmium in the presence and absence of phenanthrene. Mar Biol 94:251–257

    Article  CAS  Google Scholar 

  • Vijayavel K, Gopalakrishnan S, Thiagarajan R, Thilagam H (2009) Immunotoxic effects of nickel in the mud crab Scylla serrata. Fish Shellfish Immun 26:133–139

    Article  CAS  Google Scholar 

  • Vyskocil A, Viau C, Cízková M (1994) Chronic nephrotoxicity of soluble nickel in rats. Hum Exp Toxicol 13:689–693

    Article  CAS  Google Scholar 

  • Wells PG (1984) Marine ecotoxicological tests with zooplankton. In: Persoone G, Jaspers E, Claus C (eds) Ecotoxicological testing for the marine environment. Inst Mar Scient Res, Bredene, pp 215–256

    Google Scholar 

  • Woo S, Yum S, Park HS, Lee TK, Ryu JC (2009) Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comp Biochem Physiol C 149:289–299

    Google Scholar 

  • Xia YM, Zhu LZ (1987) Measurement method of glutathione peroxidase activity in blood and tissue. J Hyg Res 16:29–33

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. John Hodgkiss for helping to revise the manuscript. The work was funded by the National Natural Science Foundation of China (No. 40876060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guizhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Wang, G. Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel. Ecotoxicology 19, 273–284 (2010). https://doi.org/10.1007/s10646-009-0410-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0410-6

Keywords

Navigation