Skip to main content
Log in

Variation in plasma cholinesterase activity in the clay-colored robin (Turdus grayi) in relation to time of day, season, and diazinon exposure

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Cholinesterase (ChE) activity in birds is subject to interspecific and intraspecific species variations. Factors that influence enzyme activity have to be taken into account in order to obtain an accurate estimation of cholinesterase inhibition due to pesticide exposure in wild birds. This study evaluates variation of plasma cholinesterase activity in clay-colored robin (Turdus grayi) in relation to time of day, season, and exposure to diazinon. Other variables that can affect cholinesterase activity such as weight are also taken into account. The birds were marked, weighed and sexed using the cloacal technique. One dose of commercial diazinon mixed with papaya was fed to each bird at concentrations of 0.0, 0.5, 1.5 and 3.0 mg/kg ai. The results showed differences in ChE activity between seasons (t = −3.07, P < 0.05). Also, diurnal plasma cholinesterase variations were observed (20% in 2 h). The highest inhibition values were 73% for birds dosed with 1.5 mg/kg ai. Our study provides field and laboratory data on variation of ChE activity in a tropical bird species. Knowledge of the variation of ChE in the clay-colored robin will enable us to use this species as an indicator of exposure to ChE inhibiting pesticides in tropical agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarado MJ, Cobos V, González I (1994) Insecticidas y herbicidas de mayor uso en los horticultores de Yucatán. Implicaciones a la salud y al ambiente. Rev Biomédica (México) 5:180–190

    Google Scholar 

  • Busby DG, White LM (1991) Factors influencing variability in brain acetylcholinesterase activity in songbirds exposed to aerial fenitrothion spraying. In: Mineau P (ed) Cholinesterase-inhibiting insecticides. The impact on wildlife and the environmental. Elsevier, Amsterdam, pp 211–232

    Google Scholar 

  • Chable-Santos JA, Gomez-Uc E, Pasos-Enriquez RM (2007) Aves Comunes del Sur de Yucatán. Universidad Autonoma de Yucatán, Editor, 137 pp

  • Claudie R, Grolleau G, Chamoulaud S, Riviere J (2005) Plasma B-esterase activities in European raptors. J Wildl Dis 41:184–208

    Google Scholar 

  • Cobos-Gasca V, Escalona G, Mora M (2006) Inhibición de colinesterasa plasmática en el zorzal pardo (Turdus grayi) expuesto a diazinón, en un cultivo de papaya maradol en Yucatán, México. Rev Toxicol (Spain) 23:9–14

    Google Scholar 

  • Cordi B, Fossi C, Depledge M (1997) Temporal biomarker responses in wild passerine birds exposed to pesticide spray drift. Environ Toxicol Chem 16:2118–2124

    Article  CAS  Google Scholar 

  • Décaire R, Desgranges JL, Lépine C, Morneau F (1993) Impact of insecticides on the American robin (Turdus migratorius) in a suburban environment. Environ Pollut 80:231–238

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherston RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Fildes K, Szabo JK, Hooper MJ, Buttemer WA, Astheimer LB (2009) Plasma cholinesterase characteristics in native Australian birds: significance for monitoring avian species for pesticide exposure. Emu 109:41–47

    Article  CAS  Google Scholar 

  • Fleming JW (1981) Recovery of brain and plasma cholinesterase activities in ducklings exposed to organophosphorus pesticides. Arch Environ Contam Toxicol 10:215–229

    Article  CAS  Google Scholar 

  • Fleschli MA, Franson JC, Thomas NJ, Finley DL, Riley W (2004) Avian mortality events in the United States caused by cholinesterase inhibition pesticides: a retrospective summary of National Wildlife Health Center records from 1980 to 2000. Arch Environ Contam Toxicol 46:542–550

    Google Scholar 

  • Fossi MC, Massi A, Leonzio C (1994) Blood esterase inhibition in birds as an index of organophosphorus contamination: field and laboratory studies. Ecotoxicology 3:11–20

    Article  CAS  Google Scholar 

  • Fossi MC, Lari L, Casini S (1996) Interspecies variation of ‘B’ esterases in birds: the influence of size and feeding habits. Arch Environ Contam Toxicol 31:525–532

    Article  CAS  Google Scholar 

  • García-Rodriguez T, Ferrre M, Recio F, Castroviejo J (1987) Circadian rhythms of determined blood chemistry values in buzzards and eagle owls. Comp Biochem Physiol 88A:663–669

    Article  Google Scholar 

  • Gard NW, Hooper MJ (1993) Age-dependent changes in plasma and brain cholinesterase activities of eastern bluebirds and European starling. J Wildl Dis 29:1–7

    CAS  Google Scholar 

  • Hill EF (1989) Sex and storage affect cholinesterase activity in blood plasma of Japanese quail. J Wildl Dis 25:580–585

    CAS  Google Scholar 

  • Hill EF (1992) Avian toxicology of anticholinesterases. In: Ballantyne B, Marrs TC (eds) Clinical and experimental toxicology of organophosphates and carbamates. Butterworth-Heinemann LTD, Oxford, pp 272–294

    Google Scholar 

  • Hill EF, Fleming WJ (1982) Anticholinesterase poisoning of birds: field monitoring and diagnosis of acute poisoning. Environ Toxicol Chem 1:27–38

    Article  CAS  Google Scholar 

  • Hill EF, Murray HC (1987) Seasonal variation in diagnostic enzymes and biochemical constituents of captive northern bobwhites and passerines. Comp Biochem Physiol B 87:933–940

    Article  CAS  Google Scholar 

  • Hooper MJ, Detrich PJ, Weisskopf CP, Wilson BW (1989) Organophosphorus insecticide exposure in hawks inhabiting orchards during winter dormant- spraying. Bull Environ Contam Toxicol 42:651–659

    Article  CAS  Google Scholar 

  • Lari L, Massi A, Fossi MC, Casini S, Leonzio S, Focardi S (1994) Evaluation of toxic effects of the organophosphorus insecticide azinphos-methyl in experimentally and naturally exposed birds. Arch Environ Contam Toxicol 26:234–239

    Article  CAS  Google Scholar 

  • LLamosa NE (2008) Aves Comunes de la Peninsula de Yucatán. Dante Editorial, 144 pp

  • Ludke JL, Hill EF, Dieter MP (1975) Cholinesterase (ChE) response and related mortality among birds fed ChE inhibitors. Arch Environ Contam Toxicol 3:1–21

    Article  CAS  Google Scholar 

  • Mineau P, Baril A, Collins BT, Duffe J, Joerman G, Luttik R (2001) Pesticide acute toxicity reference values for birds. Rev Environ Contam Toxicol 170:13–74

    CAS  Google Scholar 

  • Neithammer KR, Basket TS (1983) Cholinesterase inhibition of birds inhabiting wheat field treated with methyl parathion and toxaphene. Arch Environ Contam Toxicol 12:471–475

    Google Scholar 

  • Norte AC, Ramos JA, Sousa JP, Sheldon BC (2009) Variation of adult great tit Parus major body condition and blood parameters in relation to sex, age, year, and season. J Ornithol 150:651–660

    Article  Google Scholar 

  • Parker ML, Goldstein MI (2000) Differential toxicities of organophosphorus and carbamate insecticides in the nesting European starling (Sturnus vulgaris). Arch Environ Contam Toxicol 39:233–242

    Article  CAS  Google Scholar 

  • Ralph C, Geoffrey G, Pyle P, Martin T, Desante D, Mila B (1995) Manual de métodos de campo para monitoreo de aves terrestres. General Technical Report. Pacific Southwest Station, Forest Service, U. S. Department of Agriculture, Albany, CA

  • Rattner B, Fairbrother A (1991) Biological variability and the influence of stress on cholinesterase activity. In: Mineau P (ed) Cholinesterase-inhibiting insecticides. The impact on wildlife and the environment. Elsevier Science Publisher, Amsterdam, pp 89–109

    Google Scholar 

  • Rondeau G, Desgranges JL (1995) Effects of insecticide use on breeding birds in Christmas tree plantations in Quebec. Ecotoxicology 4:281–298

    Article  CAS  Google Scholar 

  • Statsoft (1996) Statistics for Windows (Computer Program Manual). Tulsa, OK

  • Strum KM, Alfaro M, Haase B, Hooper MJ, Johnson KA, Lanctot RB, Lesterhuis AJ, Lopes L, Matz AC, Morales C, Paulson B, Sandercock BK, Torres-Dowdall J, Zaccagnini ME (2008) Plasma cholinesterases for monitoring pesticide exposure in nearctic-neotropical migratory shorebirds. Ornitol Neotrop 19:1–11

    Google Scholar 

  • Thompson HM (1991) Serum “B” esterase as indicator of exposure to pesticide. In: Mineau P (ed) Cholinesterase-inhibiting insecticides: The impact on wildlife and the environment. Elsevier Science Publisher, Amsterdam, pp 109–126

    Google Scholar 

  • Thompson HM (1999) Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicology 8:369–384

    Article  CAS  Google Scholar 

  • Thompson HM, Walker CH (1994) Blood esterases as indicators of exposure to organophosphorus and carbamate insecticides. In: Fossi C, Leonzio C (eds) Nondestructive biomarkers in vertebrates. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Thompson HM, Walker HM, Hardy AR (1988) Avian esterases as indicators of exposure to pesticides: the factor of diurnal variation. Bull Environ Contam Toxicol 41:4–11

    Article  CAS  Google Scholar 

  • Westlake GE, Martin PA, Stanley PI, Walker CH (1983) Control enzyme levels in the plasma, brain and liver from wild birds and mammals in Britain. Comp Biochem Physiol C Comp Pharmacol 76:15–24

    Article  CAS  Google Scholar 

  • Wolfe MF, Kendall RJ (1998) Age-dependent toxicity of diazinon and terbufos in European starlings (Sturnus vulgaris) and red-winged blackbirds (Agelaius phoeniceus). Environ Toxicol Chem 17:1300–1312

    Article  CAS  Google Scholar 

  • Zinkl JG, Mack PD, Mount ME, Shea PJ (1984) Brain cholinesterase activities and brain and liver residues in wild birds of a forest sprayed with acephate. Environ Toxicol Chem 3:79–87

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Roberto Barrientos for his help with the statistical analyses. This study was supported by a Ph.D. Fellowship to V. Cobos from the Professional Development Program (PROMEP) of Mexico, and CONACyT (SNI 21467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Mora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobos, V.M., Mora, M.A., Escalona, G. et al. Variation in plasma cholinesterase activity in the clay-colored robin (Turdus grayi) in relation to time of day, season, and diazinon exposure. Ecotoxicology 19, 267–272 (2010). https://doi.org/10.1007/s10646-009-0409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0409-z

Keywords

Navigation