Skip to main content
Log in

The influence of a toxic cyanobacterial bloom and water hydrology on algal populations and macroinvertebrate abundance in the upper littoral zone of Lake Krugersdrift, South Africa

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The biological interactions and the physical and chemical properties of the littoral zone of Lake Krugersdrift were studied for a 4-month period when a dense, toxic cyanobacterial bloom dominated by Microcystis aeruginosa was present in the main lake basin. The presence of a toxic strain of M. aeruginosa was confirmed through the use of ELISA and molecular markers that detect the presence of the mcyB and mcyD genes of the mcy gene cluster that synthesizes microcystin. An increase in Microcystis toxicity at sites dominated by the cyanobacterial scum was accompanied by an increase in total abundance of the macroinvertebrate families Hirudinae, Chironomidae, and Tubificidae. Sites located away from the cyanobacterial scum had a lower abundance but a higher diversity of macroinvertebrates. The water quality under the Microcystis scum was characterized by low pH values, low concentrations of dissolved oxygen, and lower total alkalinity values. The periphytic alga Ulothrix zonata was absent in areas dominated by the cyanobacterial scum, possibly as a result of overshadowing by the scum or direct toxic allelopathic effects on growth and photosynthesis. The diatom Diatoma vulgare dominated the benthic algal flora beneath the cyanobacterial scum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allanson BR, Hart RC, O’Keeffe JH, Robarts RD (1990) Inland waters of Southern Africa: an ecological perspective. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Allen JD (1995) Stream ecology. Chapman and Hall, London, pp 1–338

    Google Scholar 

  • American Public Health Association (APHA), American Water Works Association (AWWA), and Water Pollution Control Federation (WPCF) (1980) Standard methods for the examination of water and wastewater, 15th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • American Public Health Association (APHA) (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bagchi SN, Palod A, Chaunan VS (1990) Algicidal properties of a bloom forming blue-green alga, Oscillatoria sp. J Basic Microbiol 30:21–29. doi:10.1002/jobm.3620300106

    Article  Google Scholar 

  • Ball RC, Bahr TG (1975) Intensive survey: Red Cedar River, Michigan. In: Whitton BA (ed) River ecology. Blackwell, Oxford, pp 431–460

    Google Scholar 

  • Beattie KA, Kaya K, Codd GA (2000) The cyanobacterium Nodularia PCC 7804, of freshwater origin, produces [L-Har2] nodularin. Phytochemistry 54:57–61

    Article  CAS  Google Scholar 

  • Berger WH, Parker FL (1970) Diversity of planktonic Foraminifera in deep sea sediments. Science 168:1345–1347. doi:10.1126/science.168.3937.1345

    Article  Google Scholar 

  • Botha-Oberholster A-M, Oberholster PJ (2007) PCR based markers for detection and identification of toxic cyanobacteria. WRC Report No. 1502/1/07. Water Research Commission, Pretoria, pp 1–58

    Google Scholar 

  • Boyer GL, Satchwell MF, Shambaugh A, Watzin M, Mihuc TB, Rosen B (2004) The occurrence of cyanobacterial toxins in Lake Champlain Waters. In: Manley T, Manley P, Mihuc TB (eds) Lake Champlain: partnerships and research in the new millennium. Kluwer Academic Press, Dordrecht, pp 241–257

    Google Scholar 

  • Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270:78–86

    Article  CAS  Google Scholar 

  • Carter-Lund H, Lund JWG (1995) Freshwater algae—their microscopic world explored. Biopress Ltd, pp 1–360

  • Chong MWK, Wong PKS, Shaw GR, Seawright AA (2002) Toxicity and uptake mechanism of cylindrospermopsin and lophyrotomin in primary rat hepatocytes. Toxicon 40:205–211. doi:10.1016/S0041-0101(01)00228-8

    Article  CAS  Google Scholar 

  • Codd GA, Metcalf JS, Beattie KA (1999) Retention of Microcystis aeruginosa and microcystin by salad (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon 37:1181–1185. doi:10.1016/S0041-0101(98)00244-X

    Article  CAS  Google Scholar 

  • Figueredo CC, Giani A (2001) Seasonal variations in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia 445:165–174. doi:10.1023/A:1017513731393

    Article  Google Scholar 

  • Gausch H, Ivorra N, Lehmann V, Paulsson M, Real M, Sabater T (1998) Community composition and sensitivity of periphyton to atrazine in flowing waters: the role of environmental factors. J Appl Phycol 10:203–213. doi:10.1023/A:1008035212208

    Article  Google Scholar 

  • Grobbelaar JU (1985) Phytoplankton productivity in turbid waters. J Plankton Res 7:653–663. doi:10.1093/plankt/7.5.653

    Article  Google Scholar 

  • Grobbelaar JU (1992) Nutrient versus physical factors in determining the primary productivity of waters with high inorganic turbidity. Hydrobiologia 238:177–182. doi:10.1007/BF00048786

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Botes E, Van den Heever JA, Botha A-M, Oberholster PJ (2004) Scope and dynamics of toxin produced by cyanophytes in the freshwaters of South Africa and the implications for human and other users. WRC Report No: 1029/1/04. Water Research Commission, Pretoria, pp 1–9

    Google Scholar 

  • Hellawell JM (1986) Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science, London

    Google Scholar 

  • Hisbergues M, Christiansen G, Rouhiainen L, Sivonen K, Börner T (2003) PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch Microbiol 180:402–410. doi:10.1007/s00203-003-0605-9

    Article  CAS  Google Scholar 

  • Ikawa M, Sasner JJ, Haney JF (2001) Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia 443:19–22. doi:10.1023/A:1017535801766

    Article  CAS  Google Scholar 

  • Kaebernick M, Dittman E, Börner T, Neilan BA (2000) Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial non-ribosomal peptide. Appl Environ Microbiol 68:449–455. doi:10.1128/AEM.68.2.449-455.2002

    Article  CAS  Google Scholar 

  • Kahlert M, Andren CM (2005) Benthic diatoms as valuable indicators of acidity. Verh Int Verein Limnol 29:635–639

    CAS  Google Scholar 

  • Kiviranta J, Sivonen K, Lahti K, Luukkainen R (1991) Production and biodegradation of cyanobacterial toxins—a laboratory study. Arch Hydrobiol 121:281–294

    CAS  Google Scholar 

  • Lang C (1984) Eutrophication of Lake Leman and Neuchatel (Switzerland) indicated by oligochaete communities. Hydrobiologia 114:131–138. doi:10.1007/BF00027907

    Article  Google Scholar 

  • MacKintosh RW, Dalby KN, Campbell DG, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192. doi:10.1016/0014-5793(90)80245-E

    Article  CAS  Google Scholar 

  • Meißner K, Dittmann E, Börmer T (1996) Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes. FEMS Microbiol Lett 135:295–303. doi:10.1016/0378-1097(95)00469-6

    Article  Google Scholar 

  • Merrit RW, Cummins KW (1996) An introduction to the aquatic insects of North America, 3rd edn. Kendal/Hunt, Dubuque, Iowa, USA

  • NIWR (National Institute for Water Research) (1985) The limnology of Hartbeespoort dam. South African National Scientific Programmes Report No. 110. Foundation for Research Development, Pretoria

    Google Scholar 

  • Niyogi DK, McKnight DM, Lewis WM (1999) Influences of water and substrate quality for periphyton in a Montana stream affected by acid mine drainage. Limnol Oceanogr 44:804–809

    CAS  Google Scholar 

  • Oberholster PJ (2004) Assessing genetic diversity and identification of Microcystis aeruginosa strains through AFLP and PCR-RFLP analysis. M.Sc. Thesis, University of the Free State, Bloemfontein, South Africa, pp 1–114

  • Oberholster PJ, Botha A-M (2007) Use of PCR based technologies for risk assessment of a winter cyanobacterial bloom in Lake Midmar, South Africa. Afr J Biotechnol 6:1794–1805

    Google Scholar 

  • Oberholster PJ, Botha A-M, Cloete TE (2005a) An overview of toxic freshwater cyanobacteria in South Africa with special reference to risk, impact and detection by molecular marker tools. Biokem 17:57–71

    Google Scholar 

  • Oberholster PJ, Botha A-M, Cloete TE (2005b) Using a battery of bioassays, benthic phytoplankton and the AUSRIVAS method to monitor long-term coal tar contaminated sediment in the Cache la Poudre River, Colorado. Water Res 39:4913–4924. doi:10.1016/j.watres.2005.08.029

    Article  CAS  Google Scholar 

  • Patrick R, Reimer CW (1975) The diatoms of the United States exclusive of Alaska and Hawaii, vol 2. National Academy of Sciences, Philadelphia, USA Part 1. Monograph 13

    Google Scholar 

  • Pitois S, Jackson MH, Wood BJB (2001) Sources of the eutrophication problems associated with toxic algae: an overview. J Environ Health 64:25–32

    CAS  Google Scholar 

  • Poole HH, Atkins WRG (1929) Photo-electric measurements of submarine illumination throughout the year. J Mar Biol Assoc UK 16:297–324

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Prat N, Ward JV (1994) The tamed river. In: Margalef R (ed) Limnology now: a paradigm of planetary problems. Elsevier Science B.V.,Amsterdam, The Netherlands, pp 219–236

    Google Scholar 

  • Republic of South Africa (1998) The National Water act (Act No. 36 of 1998) Government of the Republic of South Africa, Pretoria, South Africa

  • Rondel C, Arfi R, Corbn D, le Bihan F, Hadji Ndour E, Lazzaro X (2008) A cyanobacterial bloom prevents fish trophic cascades. Freshw Biol 53:637–651. doi:10.1111/j.1365-2427.2007.01894.x

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communications. University of Illinois Press, Urbana

    Google Scholar 

  • Strayer D (1985) The benthic micrometazoans of Mirror Lake, New Hampshire. Arch Hydrobiol 72:287–426

    Google Scholar 

  • Sukenik A, Eshkol RL, Hadas O (2002) Inhibition of growth and photosynthesis of the Dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663

    Google Scholar 

  • SYSTAT (1997) Systat® 7.0.1 for Windows®: Statistics. SPSS Inc, Chicago, USA

    Google Scholar 

  • Thorp JH, Covich AP (2001) Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego, California, USA, pp 1–775

    Book  Google Scholar 

  • Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67:2810–2818. doi:10.1128/AEM.67.6.2810-2818.2001

    Article  CAS  Google Scholar 

  • Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Yoshida F, Suttajit M et al (1996) Survey of microcystins in environmental water by a highly sensitive immunoassay based on monoclonal antibody. Nat Toxins 4:271–276

    CAS  Google Scholar 

  • Van Ginkel CE (2004) A national survey of the incidence of cyanobacterial blooms and toxin produced in major impoundments. Internal Report No. N/000/00/DEQ/0503. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria, pp 1–44

    Google Scholar 

  • Van Ginkel CE, Hohls BC, Belcher E, Vermaak E, Gerber A (2001) Assessment of the Trophic Status Project. Internal report No. N/0000/00/DEQ/1799. Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria, pp 1–334

    Google Scholar 

  • Van Ginkel CE, Silberbauer MJ, Vermaak E (2000) The seasonal and spatial distribution of cyanobacteria in South African surface waters. Verh Int Verein Limnol 27:871–878

    Google Scholar 

  • Voelz NJ, Ward JV (1991) Biotic responses along the recovery gradient of a regulated stream. Can J Fish Aquat Sci 48:2477–2490. doi:10.1139/f91-289

    Article  Google Scholar 

  • Von Brand T (1944) Occurrence of anaerobiosis among invertebrates. Biodynamica 4:185–328

    Google Scholar 

  • Walmsley RD, Butty M, Van Der Piepen H, Grobler DC (1980) Light penetration and the interrelationships between optical parameters in a turbid subtropical impoundment. Hydrobiologia 70:145–157. doi:10.1007/BF00015500

    Article  Google Scholar 

  • Watson SB, Brownlee B, Satchwill T, Hargesheimer EE (2000) Quantitative analysis of trace levels of geosmin and MIB in source and drinking water using headspace SPME. Water Res 34:2818–2828. doi:10.1016/S0043-1354(00)00027-0

    Article  CAS  Google Scholar 

  • Wehr JD, Sheath RG (2001) Freshwater algae of North America, ecology and classification. Academic Press, San Diego, USA, pp 775–804

    Google Scholar 

  • White SH, Duivenvoorden LJ, Fabbro LD (2005) Impacts of a toxic Microcystis bloom on the macroinvertebrate fauna of Lake Elphinstone, Central Queensland, Australia. Hydrobiologia 548:117–126. doi:10.1007/s10750-005-4756-3

    Article  Google Scholar 

  • Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites—a short review. Toxicol Appl Pharmacol 203:201–218. doi:10.1016/j.taap.2004.11.002

    Article  CAS  Google Scholar 

  • Willen E (1976) A simplified method of phytoplankton counting. Br Phycol J 11:265–278. doi:10.1080/00071617600650551

    Article  Google Scholar 

  • Willen E (1991) Planktonic diatoms—an ecological review. Algol Stud 62:69–106 Stuttgart, Augustus 1991

    Google Scholar 

  • Winter JG, Dillon PJ, Paterson C, Reid RA, Somers KM (2003) Impacts of golf course construction and operation on headwater streams: bioassessment using benthic algae. Can J Bot 81:848–858. doi:10.1139/b03-081

    Article  CAS  Google Scholar 

  • Zohary T (1985) Hyperscum of the cyanobacterium Microcystis aeruginosa in a hypertrophic lake (Hartbeespoort Dam, South Africa). J Plankton Res 7:399–409. doi:10.1093/plankt/7.3.399

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Oberholster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberholster, P.J., Botha, AM. & Ashton, P.J. The influence of a toxic cyanobacterial bloom and water hydrology on algal populations and macroinvertebrate abundance in the upper littoral zone of Lake Krugersdrift, South Africa. Ecotoxicology 18, 34–46 (2009). https://doi.org/10.1007/s10646-008-0254-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0254-5

Keywords

Navigation