Skip to main content
Log in

Degradation of dimethyl carboxylic phthalate ester by Burkholderia cepacia DA2 isolated from marine sediment of South China Sea

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Burkholderia cepacia DA2, isolated from marine sediment of the South China Sea, is capable of utilizing dimethyl phthalate (DMP) as the sole source of carbon and energy. During the transformation of DMP in batch culture, its corresponding degradation intermediates were identified as monomethyl phthalate (MMP) and phthalate acid (PA) sequentially over the time of incubation. The biodegradation biochemical pathway of DMP was DMP to MMP and then to PA before mineralization. Degradation of DMP by B. cepacia DA2 was also dependent upon DMP-induction, and the initial concentrations of DMP affected the degradation rate. Degradation kinetics fit well with the modified Gompertz model. The optimum pH and salinity was 6.0 and <5‰, respectively, for DMP degradation by B. cepacia DA2. This study showed that the indigenous microorganisms of the deep-ocean sediments are capable of DMP degradation completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhoum N, Monser L (2004) Removal of phthalate on modified activated carbon: application to the treatment of industrial wastewater. Sep Purif Technol 38:233–239. doi:10.1016/j.seppur.2003.11.011

    Article  CAS  Google Scholar 

  • Chang H, Zylstra GJ (1999) Characterization of the phthalate permease OphD from Burkholderia cepacia ATCC 17616. J Bacteriol 181:6197–6199

    CAS  Google Scholar 

  • Cheung JKH, Lam RKW, Shi MY, Gu J-D (2007) Environmental fate of the endocrine disruptors, dimethyl phthalate esters (DMPE), under anoxic sulfate-reducing conditions. Sci Total Environ 381:126–133. doi:10.1016/j.scitotenv.2007.03.030

    Article  CAS  Google Scholar 

  • Fan Y, Wang Y, Qian P, Gu J-D (2004) Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modeling degradation. Int Biodeter Biodegr 53:57–63. doi:10.1016/j.ibiod.2003.10.001

    Article  CAS  Google Scholar 

  • Giam CS, Chah HS, Nef GS (1978) Phthalate ester plasticizers: a new class of marine pollutants. Science 199:419–421

    CAS  Google Scholar 

  • Gu J-D (2008) Microbial transformation of organic chemicals in natural environments: the fate of chemicals and the microbial involvement through enrichment culturing techniques. In: Huang QY (ed) Mineral-organic matter-microorganism interactions. Springer, New York, pp 175–198

    Chapter  Google Scholar 

  • Gu J-D, Li J, Wang Y (2005) Biochemical pathway and degradation of phthalate ester isomers by bacteria. Water Sci Technol 52(8):241–248

    CAS  Google Scholar 

  • Haigler BE, Pettigrew CA, Spain JC (1992) Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl Environ Microbiol 58:2237–2244

    CAS  Google Scholar 

  • Iturbe R, Moreno G, Elefsiniotis P (1991) Efficiency of a phthalate ester in an activated sludge system. Environ Technol 12:783–796

    Article  CAS  Google Scholar 

  • Jobling S, Reynolds T, White R, Parker MG, Sumpter JP (1995) A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 103:582–587. doi:10.2307/3432434

    Article  CAS  Google Scholar 

  • Johnson GR, Olsen RH (1997) Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl Environ Microbiol 63:4047–4052

    CAS  Google Scholar 

  • Kurane R, Suziki T, Fukuoka S (1984) Purification and some properties of phthalate ester hydrolyzing enzyme from Nocardia erythropolis. Appl Microbiol Biotechnol 29:378–383

    Google Scholar 

  • Li J, Gu J-D (2006) Biodegradation of dimethyl terephthalate by Pasteurella multocida Sa follows an alternative biochemical pathway. Ecotoxicology 15:391–397. doi:10.1007/s10646-006-0070-8

    Article  CAS  Google Scholar 

  • Li J, Gu J-D (2007) Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr isolated from wetland sediment. Sci Total Environ 380:181–187. doi:10.1016/j.scitotenv.2006.12.033

    Article  CAS  Google Scholar 

  • Li JX, Gu J-D, Pan L (2005a) Transformation of dimethyl phthalate, dimethyl isophthalate and dimethyl terephthalate by Rhodococcus rubber Sa and modeling the processes using the modified Gompertz model. Int Biodeter Biodegr 55:223–232. doi:10.1016/j.ibiod.2004.12.003

    Article  CAS  Google Scholar 

  • Li JX, Gu J-D, Yao J-H (2005b) Degradation of dimethyl terephthalate by Pasteurella multocida Sa and Sphingomonas paucimobilis Sy isolated from mangrove sediment. Int Biodeter Biodegr 56:158–165. doi:10.1016/j.ibiod.2005.07.001

    Article  CAS  Google Scholar 

  • Lottrup G, Andersson AM, Leffers H, Mortensen GK, Toppari J, Skakkebaeek NE et al (2006) Possible impact of phthalates on infant reproductive health. Int J Androl 29(1):172–180. doi:10.1111/j.1365-2605.2005.00642.x

    Article  CAS  Google Scholar 

  • Murai S, Imajo S, Takasu Y, Takahashi K, Hattori K (1998) Removal of phthalic acid esters from aqueous solution by inclusion and adsorption on-cyclodextrin. Environ Sci Technol 32:782–787. doi:10.1021/es970463d

    Article  CAS  Google Scholar 

  • Niazi JH, Prasad DT, Karegoudar TB (2001) Initial degradation of dimethylphthalate by esterases from Bacillus species. FEMS Microbiol Lett 196:201–205. doi:10.1111/j.1574-6968.2001.tb10565.x

    Article  CAS  Google Scholar 

  • Richards FJ (1959) A dexible growth function for empirical use. J Exp Bot 10:290–300. doi:10.1093/jxb/10.2.290

    Article  Google Scholar 

  • Schepers AW, Thibault J, Lacroix C (2000) Comparison of simple neural networks and nonlinear regression models for descriptive modeling of Lactobacillus helveticus growth in pH-controlled batch cultures. Enzyme Microb Technol 26:431–445. doi:10.1016/S0141-0229(99)00183-0

    Article  CAS  Google Scholar 

  • Shen P, Wang YY, Gu J-D (2004) Degradation of phthalate acid and orthodimethyl phthalate ester by bacteria isolated from sewage sludge and its biochemical pathway. Chin J Appl Environ Biol 10:643–664

    CAS  Google Scholar 

  • Sivamurthy K, Pujar BG (1989) Bacterial degradation of dimethylterephthalate. J Ferment Bioeng 68:375–377. doi:10.1016/0922-338X(89)90015-9

    Article  CAS  Google Scholar 

  • Sivamurthy K, Swamy BM, Pujar B (1991) Transformation of dimethylterephthalate by the fungus Sclerotium rolfsii. FEMS Microbiol Lett 79:37–40. doi:10.1111/j.1574-6968.1991.tb04500.x

    Article  CAS  Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749. doi:10.1016/S0045-6535(97)00195-1

    Article  CAS  Google Scholar 

  • Thebault P, Cases JM, Fiessinger F (1981) Mechanism underlying the removal of organic micropollutants during coagulation by an aluminium or iron salt. Water Res 15:183–189. doi:10.1016/0043-1354(81)90110-X

    Article  CAS  Google Scholar 

  • US EPA (1992) and update. Code of federal regulations, 40 CFR, Part 136. US EPA

  • Wang YY, Fan YZ, Gu J-D (2003) Aerobic degradation of phthalic acid by Comamonas acidovorans Fy-1 and dimethyl phthalate ester by two reconstituted consortia from sewage sludge at high concentrations. World J Microbiol Biotechnol 19:811–815. doi:10.1023/A:1026021424385

    Article  Google Scholar 

  • Wang Y, Fan Y, Gu J-D (2004) Dimethyl phthalate ester degradation by two planktonic and immobilized bacterial consortia. Int Biodeter Biodegr 53:93–101. doi:10.1016/j.ibiod.2003.10.005

    Article  CAS  Google Scholar 

  • Wang YP, Gu J-D (2006a) Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediment. Exotoxiology 15:549–557. doi:10.1007/s10646-006-0093-1

    Article  CAS  Google Scholar 

  • Wang Y, Gu J-D (2006b) Degradation of dimethyl isophthalate by Viarovorax paradoxus strain T4 isolated from deep-ocean sediment of the South China Sea. J Hum Ecol Risk Assess 12:236–247. doi:10.1080/10807030500531521

    Article  CAS  Google Scholar 

  • Wang J, Liu P, Qian Y (1996) Biodegradation of phthalic acid esters by an acclimated activated sludge. Environ Int 22:737–774. doi:10.1016/S0160-4120(96)00065-7

    Article  CAS  Google Scholar 

  • Wang J, Liu P, Qian Y (1997) Biodegradation of phthalic acid esters by immobilized microbial cells. Environ Int 23:775–778. doi:10.1016/S0160-4120(97)00089-5

    Article  Google Scholar 

  • Xu XR, Li HB, Gu J-D (2005) Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1. Int Biodeter Biodegr 55:9–15. doi:10.1016/j.ibiod.2004.05.005

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Gu J-D (2006) Simultaneous decontamination of hexavalent chromium and methyl tert-butyl ether by UV/TiO2 process. Chemosphere 63:254–260. doi:10.1016/j.chemosphere.2005.07.062

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Gu J-D (2007a) Photocatalytic reduction of hexavalent chromium and degradation of di-n-butyl phthalate in aqueous TiO2 suspensions under ultraviolet light irradiation. Environ Technol 28:1055–1061. doi:10.1080/09593332808618866

    Article  Google Scholar 

  • Xu XR, Li HB, Gu J-D, Li X-Y (2007b) Kinetics of n-butyl benzyl phthalate degradation by a pure bacterial culture from the mangrove sediment. J Hazard Mater 140:194–199. doi:10.1016/j.jhazmat.2006.06.054

    Article  CAS  Google Scholar 

  • Yan H, Ye C, Yin C (1995) Kinetics of phthalate ester biodegradation by Chlorella pyrenoidosa. Environ Toxicol Chem 14:931–938. doi:10.1897/1552-8618(1995)14[931:KOPEBB]2.0.CO;2

    Article  CAS  Google Scholar 

  • Zhang W, Xu Z, Pan B (2007) Assessment on the removal of dimethyl phthalate from aqueous phase using a hydrophilic hyper-cross-linked polymer resin NDA-702. J Colloid Interface Sci 311:382–390. doi:10.1016/j.jcis.2007.03.005

    Article  CAS  Google Scholar 

  • Zhao X-K, Yang G-P, Wang Y-J (2004) Adsorption of dimethyl phthalate on marine sediments. Water Air Soil Pollut 157:179–192. doi:10.1023/B:WATE.0000038880.57430.c3

    Article  CAS  Google Scholar 

  • Zhou QH, Wu ZB, Cheng SP, He F, Fu GP (2005) Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biol Biochem 37:1454–1459. doi:10.1016/j.soilbio.2005.01.003

    Article  CAS  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Nature Science Doctoral Grant from Guangdong Province (06301430) and a Young Innovation Grant of South China Sea Institute of Oceanography, Chinese Academy of Sciences (07SC011009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Dong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Yin, B., Hong, Y. et al. Degradation of dimethyl carboxylic phthalate ester by Burkholderia cepacia DA2 isolated from marine sediment of South China Sea. Ecotoxicology 17, 845–852 (2008). https://doi.org/10.1007/s10646-008-0247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0247-4

Keywords

Navigation