Skip to main content
Log in

Ecological impact of repeated applications of chlorpyrifos on zooplankton community in mesocosms under Mediterranean conditions

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The effects of the insecticide chlorpyrifos were studied in plankton-dominated mesocosms under Mediterranean conditions. Chlorpyrifos was applied four times at 1 week intervals at nominal concentrations of 0.033, 0.1, 0.33, and 1 μg/l simulating repeated agricultural applications. The lowest 7 days time weighted averaged concentrations (TWAC) during the 28 days exposure period were calculated using the FOCUS equation to express the no observed effect concentration (NOEC) values. At population level the lowest NOEC calculated was 0.012 μg/l (treatment concentration 0.033 μg/l). The most affected taxon was Cladocera (Daphnia group galeata) followed by Copepoda (cyclopoids and nauplii). No effects were observed on phytoplankton (chlorophyll-a biomass) at any treatment level. The smallest NOECcommunity calculated by means of multivariate techniques was 0.1 μg/l when expressed in terms of the nominal treatment level and 0.074 μg/l when based on the lowest 7 days TWA concentration during the 28 days application period. Indirect effects on zooplankton populations were observed due to shifts in competition and predation between populations. Compared with previous micro/mesocosm experiments simulating a single application exposure regime, results from our study revealed a lower threshold level for the most sensitive measurement endpoint (difference a factor of three (in terms of nominal treatment level), more severe indirect effects and longer recovery periods of the affected populations (>13 weeks in the test systems treated with 1 μg/l). These differences could be attributed to the repeated pulse exposure scenario approach designed for our studies together with the particular climatic conditions involving our Mediterranean mesocosms (i.e., temperature, cladocerans life history, and algae blooms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso M (1996) Fauna Ibérica. 7: crustacea branchiopoda. MNCN, Fauna Ibérica Project Publications, Madrid, Spain

    Google Scholar 

  • American public health association (APHA) (1995) Standard methods for the examination of water and wastewater, 19th ed. Washington DC, USA

  • Amoros C (1984) Introduction practique a la systematique des organismes des eaux continentals françaises. Vol 5: crustacés Cladocères. Association française de limnologie, Lyon, France

    Google Scholar 

  • Barron MG, Woodburn KB (1995) Ecotoxicology of chlorpyrifos. Rev Environ Contam Toxicol 144:1–93

    CAS  Google Scholar 

  • Barnthouse LW (2004) Quantifying population recovery rates for ecological risk assessment. Environ Toxicol Chem 23:500–508. doi:10.1897/02-521

    Article  CAS  Google Scholar 

  • Benzie JAH (2005) Guides to the identification of the microinvertebrates of the continental waters of the world. 21: Cladocera: the genus Daphnia (including Daphniopsis) (Anomopoda: Daphniidae). Academic Publishing, The Hague, The Netherlands

    Google Scholar 

  • Bernot RJ, Dodds WK, Quist MC, Guy CS (2006) Temperate and kairomone induced life history plasticity in coexisting Daphnia. Aquat Ecol 40:361–372. doi:10.1007/s10452-006-9035-5

    Article  Google Scholar 

  • Biever RC, Giddings JM, Kiamos M, Annunziato MF, Meyerhoff R, Racke K (1994) Effects of chlorpyrifos on aquatic microcosms over a range of off-target drift exposure levels. Proceedings of the Brighton crop protection conference. Pests diseases. British Crop Protection Council, Farnham Surrey, UK, pp 1367–1372

  • Boesten JJTI, Köpp H, Adriaanse PI, Brock TCM, Forbes VE (2007) Conceptual model for improving the link between exposure and effects in the aquatic risk assessment of pesticides. Ecotoxicol Environ Saf 66:291–308. doi:10.1016/j.ecoenv.2006.10.002

    Article  CAS  Google Scholar 

  • Boxall A, Brown C, Barrett K (2001) Higher tier laboratory aquatic toxicity testing. Cranfield Centre for EcoChemistry, UK. Research report no. JF 4317E for DETR

  • Brazner JC, Heinis LJ, Jensen DA (1989) A littoral enclosure for replicated field experiments. Environ Toxicol Chem 8:1209–1216. doi:10.1897/1552-8618(1989)8[1209:ALEFRF]2.0.CO;2

    Article  CAS  Google Scholar 

  • Brazner JC, Kline ER (1990) Effects of chlorpyrifos on the diet and growth of larval fathead minnow, Pimephales promelas. Can J Fish Aquat Sci 47:1157–1165

    Google Scholar 

  • Brock TCM, Crum SJ, Van Wijngaarden RPA, Budde BJ, Tijink J, Zuppelli A et al (1992a) Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: I fate and primary effects of the active ingredient chlorpyrifos. Arch Environ Contam Toxicol 23:69–84

    CAS  Google Scholar 

  • Brock TCM, Van den Bogaert M, Boss AR, Van Breukelen SWF, Reiche R, Terwoert J et al (1992b) Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: II. Secondary effects on community structure. Arch Environ Contam Toxicol 23:391–409

    CAS  Google Scholar 

  • Brock TCM, Vet JJRM, Kerkhofs MJJ, Lijzen J, Van Zuilekom WJ, Gijlstra R (1993) Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: III. Aspects of ecosystem functioning. Arch Environ Contam Toxicol 25:160–169. doi:10.1007/BF00212127

    Article  CAS  Google Scholar 

  • Brock TCM, Van Wijngaarden RPA, Van Geest G (2000) Ecological risks of pesticides in freshwater ecosystems. Part 2: Insecticides. Report 089, Alterra, Wageningen, The Netherlands.

  • Brock TCM, Arts GHP, Maltby L, Van den Brink PJ (2006) Aquatic risks of pesticides, ecological protection goals, and common aims in European Union legislation. Integr Environ Assess Manag 2:e20–e46. doi:10.1897/1551-3793(2006)2[e20:AROPEP]2.0.CO;2

    Article  Google Scholar 

  • Chang KH, Sakamoto M, Hanazato T (2005) Impact of pesticide application on zooplankton communities with different densities of invertebrate predators: An experimental analysis using small-scale mesocosms. Aquat Toxicol 72:373–382. doi:10.1016/j.aquatox.2005.02.005

    Article  CAS  Google Scholar 

  • Crum SJH, Brock TCM (1994) Fate of chlorpyrifos in indoor microcosms and outdoor experimental ditches. In: Hill IA, Heimbach F, Leeuwangh P, Matthiesen P (eds) Freshwater field tests for hazard assessment of chemicals. Lewis Boca Raton, FL, USA, pp 315–322

    Google Scholar 

  • Cuppen JGM, Crum SJH, Van den Heuvel HH, Smidt RA, Van den Brink PJ (2002) The effects of a mixture of two insecticides on freshwater microcosms. I. Fate of insecticides and responses of macroinvertebrates. Ecotoxicology 11:165–180. doi:10.1023/A:1015470731330

    Article  CAS  Google Scholar 

  • Ecological Committee on FIFRA Risk Assessment Methods (ECOFRAM) (1999) ECOFRAM draft Aquatic Report. US Enviromental Protection Agency

  • European Union (2000) Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Water Framew Directive. Off J Eu Comm L 327(1)

  • Expert advisory forum on priority substances (EAF) and Expert Group of Quality Standards, (2005) Common implementation strategy for the water framework directive (2000/60/EC). Environmental quality standards (EQS). Priority substance no. 9 Chlorpyrifos. Brussels, Belgium.

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233. doi:10.1016/S0048-9697(03)00141-4

    Article  CAS  Google Scholar 

  • Forum for the coordination of pesticides fate models and their use (FOCUS) (2001) FOCUS surface water scenarios in the EU evaluation process under 91/414/EEC. EC Document SANCO/4802/2001. Report of the FOCUS Working Group on Surface Water Scenarios, Brussels, Belgium

  • Gilbert JJ (1985) Competition between rotifers and Daphnia. Ecology 66:1943–1950. doi:10.2307/2937390

    Article  Google Scholar 

  • Gilbert JJ (1988) Susceptibilities of ten rotifer species to interference from Daphnia pulex. Ecology 69:1826–1838. doi:10.2307/1941160

    Article  Google Scholar 

  • Graney RL, Kennedy JH, Rodgers JH (1994) Aquatic mesocosm studies in ecological risk assessment. Lewis, Boca Raton, FL, USA

    Google Scholar 

  • Hanazato T, Yasuno M (1990) Influence of persistence period of an insecticide on recovery patterns of a zooplankton community in experimental ponds. Environ Pollut 67:109–122

    Article  CAS  Google Scholar 

  • Hanazato T (1998) Response of a zooplankton community to insecticide application in experimental ponds: a review and the implications of the effects of chemicals on the structure and functioning of freshwater communities. Environ Pollut 101:361–373. doi:10.1016/S0269-7491(98)00053-0

    Article  CAS  Google Scholar 

  • Hanazato T (2001) Pesticide effects on freshwater zooplankton: an ecological perspective. Environ Pollut 112:1–10. doi:10.1016/S0269-7491(00)00110-X

    Article  CAS  Google Scholar 

  • Hickie BE, McCarty LS, Dixon DG (1995) A residue-based toxicokinetic model for pulse exposure toxicity in aquatic systems. Environ Toxicol Chem 14:2187–2197. doi:10.1897/1552-8618(1995)14[2187:ARTMFP]2.0.CO;2

    Article  CAS  Google Scholar 

  • Hill IA, Heimbach F, Leeuwangh P, Matthiesen P (eds) (1994) Freshwater field tests for hazard assessment of chemicals. Lewis, Boca Raton, FL, USA

    Google Scholar 

  • Hommen U, Veith D, Ratte HT (1994) A computer program to evaluate plankton data from freshwater field test. In: Hill IA, Heimbach F, Leeuwangh P, Matthiesen P (eds) Freshwater field tests for hazard assessment of chemicals. Lewis, Boca Raton, FL, USA, pp 503–513

    Google Scholar 

  • Hughes DN, Boyer MG, Papst MH, Fowle CD, Rees GAV, Baulu P (1980) Persistence of three organophosphorus insecticides in artificial ponds and some biological implications. Arch Environ Contam Toxicol 9:269–279. doi:10.1007/BF01057407

    Article  CAS  Google Scholar 

  • Hurlbert SH, Mulla MS, Willson HR (1972a) Effects of an organophosphorus insecticide on the phytoplankton, zooplankton, and insect populations of freshwater ponds. Ecol Monogr 42:269–299. doi:10.2307/1942211

    Article  Google Scholar 

  • Hurlbert SH, Mulla MS, Keith JO, Westlake WE, Dusch ME (1972b) Biological effects and persistence of Dursban® on freshwater ponds. J Econ Entomol 63:43–52

    Google Scholar 

  • Kerfoot WC, Levitan C, DeMott WR (1988) Daphnia–phytoplankton interactions: dependent shifts in resource quality. Ecology 69:1806–1825. doi:10.2307/1941159

    Article  Google Scholar 

  • Kersting K, Van Wijngaarden RPA (1992) Effects of chlorpyrifos on a microecosystem. Environ Toxicol Chem 11:365–372. doi:10.1897/1552-8618(1992)11[365:EOCOAM]2.0.CO;2

    Article  CAS  Google Scholar 

  • Kersting K, Van den Brink PJ (1997) Effects of the insecticide Dursban® 4E (a.i. chlorpyrifos) in outdoor experimental ditches. Responses of ecosystem metabolism. Environ Toxicol Chem 16:251–259. doi:10.1897/1551-5028(1997)016<0251:EOTIDA>2.3.CO;2

    Article  CAS  Google Scholar 

  • Leeuwangh P, Brock TCM, Kersting K (1994) An evaluation of four types of freshwater model ecosystem for assessing the hazard of pesticides. Hum Exp Toxicol 13:888–899

    Article  CAS  Google Scholar 

  • Lopez T, Gabellone N, Toja J (1991) Limnological comparison between two peridunar ponds in the Doñana national park (SW Spain). Arch Hydrobiol 120:357–378

    Google Scholar 

  • López-Mancisidor P, Carbonell G, Marina A, Fernández C, Tarazona JV (2007) Zooplankton community responses to chlorpyrifos in mesocosms under Mediterranean conditions. Ecotoxicol Environ Saf (in press)

  • López-Mancisidor P, Van den Brink PJ, Crum SJH, Maund SJ, Carbonell G, Brock TCM (2008) Responses of zooplankton in lufenuron-stressed experimental ditches in the presence or absence of uncontaminated refuges. Environ Toxicol Chem 27:1317–1331. doi:10.1897/07-270.1

    Article  Google Scholar 

  • Lucassen WGH, Leeuwangh P (1994) Responses of zooplankton to Dursban® 4E insecticide in a pond experiment. In: Graney RL, Kennedy JH, Rodgers JH (eds) Aquatic mesocosm studies in ecological risk assessment. Lewis, Boca Raton, USA, pp 517–533

    Google Scholar 

  • Marshall WK, Roberts JR (1978) Ecotoxicology of chlorpyrifos. NRCC 16079 Report. National Research Council of Canada, Ottawa, Ontario

  • Ministerio de Agricultura Pesca y Alimentación (2002) Real Decreto 1201/2002, de 20 de noviembre, por el que se regula la producción integrada de productos agrícolas. Boletín Oficial del Estado, Madrid, España

  • Ministerio de Agricultura Pesca y Alimentación (2004) Orden APA/1657/2004, de 31 de mayo. por la que se establece la norma técnica específica de la identificación de garantía nacional de producción integrada de cítricos. Boletín Oficial del Estado, Madrid, España

    Google Scholar 

  • Nogrady T, Alai M (1983) Cholinergic neurotransmission in rotifers. Hydrobiologia 104:149–153. doi:10.1007/BF00045962

    Article  CAS  Google Scholar 

  • Parsons JT, Sturgeoner GA (1991) Acute toxicity of permethrin, fenitrothion, carbaryl, and carbofuran to mosquito larvae during single or mutliple-pulse exposures. Environ Toxicol Chem 10:1229–1233. doi:10.1897/1552-8618(1991)10[1229:ATOPFC]2.0.CO;2

    Article  CAS  Google Scholar 

  • Preston BL (2002) Indirect effects in aquatic ecotoxicology: implications for ecological risk assessment. Environ Manage 29:311–323. doi:10.1007/s00267-001-0023-1

    Article  Google Scholar 

  • Pusey BJ, Arthington AH, McClean J (1994) The effects of a pulsed application of chlorpyrifos on macroinvertebrate communities in an outdoor artificial stream system. Ecotoxicol Environ Saf 27:221–250. doi:10.1006/eesa.1994.1019

    Article  CAS  Google Scholar 

  • Racke KD (1992) Environmental fate of Chlorpyrifos. Rev Environ Contam Toxicol 131:1–150

    Google Scholar 

  • Reinert KH, Giddings JM, Judd L (2002) Effects analysis of time-varying or repeated exposures in aquatic ecological risk assessment of agrochemicals. Environ Toxicol Chem 21:1977–1992. doi:10.1897/1551-5028(2002)021<1977:EAOTVO>2.0.CO;2

    Article  CAS  Google Scholar 

  • Santé des Consommateurs (SANCO) (2002) Guidance document on aquatic ecotoxicology in the context of the Directive 91/414/EEC. European Commission, Health & Consumer Protection Directorate-General, SANCO/3268/2001 rev. 4 (final). Brussels, Belgium.

  • Serrano L, Toja J (1998) Interannual variability in the zooplankton community of a shallow temporary pond. Verh Int Ver Theor Angew Limnol 26:1575–1581

    Google Scholar 

  • Siefert RE, Lozano SJ, Brazner JC, Knuth ML (1989) Littoral enclosures for aquatic field testing of pesticides: effects of chlorpyrifos on a natural system. Miscellaneous Publ Ser Entomol Soc Am 75:57–73

    Google Scholar 

  • Soto D, Hurlbert SH (1991) Long-term experiments on calanoid–cyclopoid interactions. Ecol Monogr 61:245–265. doi:10.2307/2937108

    Article  Google Scholar 

  • Stark JD, Wennergren U (1995) Can population effects of pesticides be predicted from demographic toxicological studies? J Econ Entomol 85:1089–1096

    Google Scholar 

  • Statistical Office of the European Communities (EUROSTAT) Agriculture, forestry and fisheries data: agricultural products. Available at the internet-site: http://www.epp.eurostat.ec.europa.eu

  • Stay FS, Flum TE, Shannon LJ, Young JD (1989) An assessment of the precision and accuracy of SAM and MFC microcosms exposed to toxicants. In: Cowgill UM, Williams LR (eds) Aquatic toxicology and hazard assessment: 12th volume. ASTM STP 1027. Am Soc Testing Materials, Philadelphia, pp 189–203

    Google Scholar 

  • Tarazona JV (2005) Geographical differences in the evaluation and prediction of the effects of pesticides. In: Liess M, Brown C, Dohmen P, Duquesne S, Hart A, Heimbach F, Kreuger J, Lagadic L, Maund S, Reinert W, Streloke M, Tarazona JV (eds) Effects of pesticides in the field. Society of environmental toxicology and chemistry (SETAC). Brussels, pp 102–104

    Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination. Version 4.5. Microcomputer Power, Ithaca NY, USA

  • Thorp JH, Covich AP (2001) Ecology and classification of North American freshwater invertebrates, 2nd edn. Academic Press, London, UK

    Google Scholar 

  • Touart L (1988) Guidance document for aquatic mesocosm tests to support pesticide registrations. EPA 540/09//88/035. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Van den Brink PJ, Van Donk E, Gylstra R, Crum SJH, Brock TCM (1995) Effects of chronic low concentrations of the pesticides chlorpyrifos and atrazine in indoor fresh-water microcosms. Chemosphere 31:3181–3200. doi:10.1016/0045-6535(95)00180-G

    Article  Google Scholar 

  • Van den Brink PJ, Van Wijngaarden RPA, Lucassen WGH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban® 4E (active ingredient chlorpyrifos) in outdoor experimental ditches 2. Invertebrate community responses and recovery. Environ Toxicol Chem 15:1143–1153. doi:10.1897/1551-5028(1996)015<1143:EOTIDA>2.3.CO;2

    Article  Google Scholar 

  • Van den Brink PJ, Ter Braak CJF (1998) Multivariate analysis of stress in experimental ecosystems by principal response curves and similarity analysis. Aquat Ecol 32:163–178. doi:10.1023/A:1009944004756

    Article  Google Scholar 

  • Van den Brink PJ, Ter Braak CJF (1999) Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ Toxicol Chem 18:138–148. doi:10.1897/1551-5028(1999)018<0138:PRCAOT>2.3.CO;2

    Article  Google Scholar 

  • Van den Brink PJ, Hattink J, Bransen F, Van Donk E, Brock TCM (2000) Impact of the fungicide carbendazim in freshwater microcosms II. Zooplankton, primary producers and final conclusions. Aquat Toxicol 48:251–264. doi:10.1016/S0166-445X(99)00037-5

    Article  Google Scholar 

  • Van Wijngaarden RPA, Leeuwangh P, Lucassen WGH, Romijn K, Ronday R, Van der Velde R et al (1993) Acute toxicity of chlorpyrifos to fish, a newt, and aquatic invertebrates. Bull Environ Contam Toxicol 51:716–723. doi:10.1007/BF00201650

    Article  Google Scholar 

  • Van Wijngaarden RPA, Brock TCM, Douglas MT (2005a) Effects of chlorpyrifos in freshwater model ecosystems: the influence of experimental conditions on ecotoxicological thresholds. Pest Manag Sci 61:923–935. doi:10.1002/ps.1084

    Article  CAS  Google Scholar 

  • Van Wijngaarden RPA, Brock TCM, Van den Brink PJ (2005b) Threshold levels for effects of insecticides in freshwater ecosystems: a review. Ecotoxicology 14:355–380. doi:10.1007/s10646-004-6371-x

    Article  CAS  Google Scholar 

  • Van Wijngaarden RPA, Van den Brink PJ, Crum SJH, Oude Voshaar JH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Durban 4®E (a.i. chlorpyrifos) in outdoor experimental ditches: I. Comparison of short-term toxicity between laboratory and field. Environ Toxicol Chem 15:1133–1142

    Article  Google Scholar 

  • Vanni MJ, Lampert W (1992) Food quality effects on life history traits and fitness in the generalist herbivore Daphnia. Oecologia 92:48–57. doi:10.1007/BF00317261

    Article  Google Scholar 

  • Waters Corporation (2002) Environmental & agrochemical applications notebook, Rev 3. Massachussetts, USA, pp 9

  • Williams DA (1972) The comparison of several dose levels with a zero dose control. Biometrics 28:519–531. doi:10.2307/2556164

    Article  CAS  Google Scholar 

  • Williamson CE (1980) The predatory behaviour of Mesocyclops edax; predator preferences, prey defenses and starvation induced changes. Limnol Oceanogr 25:903–909

    Article  Google Scholar 

  • Zakai NP (1984) Predation of Cyclops vicinus (Copepoda Cyclopoidea) on small zooplankton animals in Lake Balaton (Hungary). Arch Hydrobiol 99:306–378

    Google Scholar 

Download references

Acknowledgments

The authors thank Ana Marina, Luis Zazo, Juan Carlos Bravo and Adolfo González for their technical assistance. This research was supported by a National Research Project from the Spanish Ministry of Education and Science (REN2003-06917-C02-01). Work was performed while P López-Mancisidor was Conservational Biology doctoral student, supported by an INIA Project (RTA 01-045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia López-Mancisidor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Mancisidor, P., Carbonell, G., Fernández, C. et al. Ecological impact of repeated applications of chlorpyrifos on zooplankton community in mesocosms under Mediterranean conditions. Ecotoxicology 17, 811–825 (2008). https://doi.org/10.1007/s10646-008-0239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0239-4

Keywords

Navigation