Skip to main content

Advertisement

Log in

Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Investigative efforts into the potential endocrine-disrupting effects of chemicals have mainly concentrated on vertebrates, with significantly less attention paid to understanding potential endocrine disruption in the invertebrates. Given that invertebrates account for at least 95% of all known animal species and are critical to ecosystem structure and function, it remains essential to close this gap in knowledge and research. The lack of progress regarding endocrine disruption in invertebrates is largely due to: (1) our ignorance of mode-of-action, physiological control, and hormone structure and function in invertebrates; (2) lack of a standardized invertebrate assay; (3) the irrelevance to most invertebrates of the proposed activity-based biological indicators for endocrine disruptor (ED) exposure (androgen, estrogen, and thyroid); (4) limited field studies. Past and ongoing research efforts using the standard invertebrate toxicity test model, the mysid shrimp, have aimed at addressing some of these issues. The present review serves as an update to a previous publication on the use of mysids for the evaluation of EDs (Verslycke et al. 2004a). It summarizes recent investigative efforts that have significantly advanced our understanding of invertebrate-specific endocrine toxicity, population modeling, field studies, and transgeneration standard test development using the mysid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta CA, Poirrier MA (1992) Grooming behavior and associated structures of the mysid Mysidopsis bahia. J Crustacean Biol 12:383–391

    Google Scholar 

  • ASTM (1998) Standard guide for conducting static and flow-through acute toxicity tests with mysids from the west coast of the United States Annual book of ASTM standards, vol 11.05. American Society for Testing of Materials. Philadelphia, PA, USA, pp E1463–E1492

  • ASTM (1999) Standard guide for conducting life-cycle toxicity tests with saltwater mysids Annual book of ASTM standards, vol 11.05. American Society for Testing of Materials, Philadelphia, PA, USA, pp E1191–E1197

  • ASTM (2002) Standard guide for conducting acute toxicity tests on materials with fishes, macroinvertebrates, and amphibians. Annual book of ASTM standards, vol 11.05. American Society for Testing of Materials, Philadelphia, PA, USA, pp E729–E776

  • Audzijonyte A, Damgaard J, Varvio SL, Vainio JK, Vainola R (2005a) Phylogeny of Mysis (Crustacea, Mysida): history of continental invasions inferred from molecular and morphological data. Cladistics 21:575–596

    Google Scholar 

  • Audzijonyte A, Pahlberg J, Vainola R, Lindstrom M (2005b) Spectral sensitivity differences in two Mysis sibling species (Crustacea, Mysida): adaptation or phylogenetic constraints? J Exp Mar Biol Ecol 325:228–239

    Google Scholar 

  • Baldwin WS, Graham SE, Shea D, LeBlanc GA (1998) Altered metabolic elimination of testosterone and associated toxicity following exposure of Daphnia magna to nonylphenol polyethoxylate. Ecotoxicol Environ Saf 39:104–111

    CAS  Google Scholar 

  • Bonneton F, Zelus D, Iwema T, Robinson-Rechavi M, Laudet V (2003) Rapid divergence of the ecdysone receptor in Diptera and Lepidoptera suggests coevolution between ECR and USP-RXR. Mol Biol Evol 20:541–553

    CAS  Google Scholar 

  • Brandt OM, Fujimura RW, Finlayson BJ (1993) Use of Neomysis mercedis (Crustacea: Mysidacea) for estuarine toxicity tests. Trans Am Fish Soc 122:279–288

    Google Scholar 

  • Chang ES (1993) Comparative endocrinology of molting and reproduction: insects and crustaceans. Annu Rev Entomol 38:161–180

    CAS  Google Scholar 

  • Chang ES (2005) Stressed-out lobsters: crustacean hyperglycemic hormone and stress proteins. Integr Comp Biol 45:43–50

    CAS  Google Scholar 

  • Chen SH, Lin CY, Kuo CM (2005) In silico analysis of crustacean hyperglycemic hormone family. Mar Biotechnol 7:193–206

    CAS  Google Scholar 

  • Chin P, Shin YK, Jeon EM (1998) Effects of PCBs (polychlorinated biphenyls) on energy budget in mysid, Neomysis awatschensis: II. Effects of PCBs on energy budget in mysid, Neomysis awatschensis. J Korean Fish Soc 31:104–108

    CAS  Google Scholar 

  • Chung ACK, Durica DS, Clifton SW, Roe BA, Hopkins PM (1998) Cloning of crustacean ecdysteroid receptor and retinoid-X receptor gene homologs and elevation of retinoid-X receptor mRNA by retinoic acid. Mol Cell Endocrinol 139:209–227

    CAS  Google Scholar 

  • Chung JS, Webster SG (2005) Dynamics of in vivo release of molt-inhibiting hormone and crustacean hyperglycemic hormone in the shore crab, Carcinus maenas. Endocrinol 146:5545–5551

    CAS  Google Scholar 

  • Clark JR, Goodman LR, Borthwick PW, Patrick JM, Moore JC, Lores EM (1986) Field and laboratory toxicity tests with shrimp, mysids, and sheephead minnows exposed to fenthion. In: Poston TM, Purdy R (eds) Aquatic toxicology and environmental fate, vol 9. ASTM, Philadelphia, PA, pp 161–176

    Google Scholar 

  • Cuzin-Roudy J, Saleuddin ASM (1989) The mysid Siriella armata, a biological model for the study of hormonal control of molt and reproduction in crustaceans: a review. Invertebr Reprod Dev 16:33–42

    Google Scholar 

  • David P, Dauphin-Villemant C, Mesneau A, Meyran JC (2003) Molecular approach to aquatic environmental bioreporting: differential response to environmental inducers of cytochrome P450 monooxygenase genes in the detritivorous subalpine planktonic Crustacea, Daphnia pulex. Mol Ecol 12:2473–2481

    CAS  Google Scholar 

  • deFur PL (2004) Use and role of invertebrate models in endocrine disruptor research and testing. ILAR J 45:484–493

    CAS  Google Scholar 

  • deFur PL, Crane M, Ingershold C, Tattersfield L (1999) Endocrine disruption in invertebrates: endocrinology, testing and assessment. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA

  • De Kleijn DPV, Van Herp F (1998) Involvement of the hyperglycemic neurohormone family in the control of reproduction in decapod crustaceans. Invertebr Reprod Dev 33:263–272

    Google Scholar 

  • De Lisle PF, Roberts MH Jr (1994) The effect of salinity on cadmium toxicity in the estuarine mysid Mysidopsis bahia: roles of osmoregulation and calcium. Mar Environ Res 37:47–62

    Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Res 28:137–167

    Google Scholar 

  • Domingues PM, Turk PE, Andrade JP, Lee PG (1999) Culture of the mysid, Mysidopsis almyra (Bowman) (Crustacea: Mysidacea) in a static water system: effects of density and temperature on production, survival and growth. Aquact Res 30:1–9

    Google Scholar 

  • Engstrom J, Viherluoto M, Viitasalo M (2001) Effects of toxic and non-toxic cyanobacteria on grazing, zooplanktivory and survival of the mysid shrimp Mysis mixta. J Exp Mar Biol Ecol 257:269–280

    Google Scholar 

  • Fingerman M, Jackson NC, Nagabhushanam R (1998) Hormonally-regulated functions in crustaceans as biomarkers of environmental pollution. Comp Biochem Physiol C 120:343–350

    CAS  Google Scholar 

  • Fockedey N, Mees J, Vangheluwe M, Verslycke T, Janssen CR, Vincx M (2005) Temperature and salinity effects on post-marsupial growth of Neomysis integer (Crustacea : Mysidacea). J Exp Mar Biol Ecol 326:27–47

    Google Scholar 

  • Fockedey N, Ghekiere A, Bruwiere S, Janssen CR, Vincx M (2006) Effect of salinity and temperature on the intra-marsupial development of the brackish water mysid Neomysis integer (Crustacea: Mysidacea). Mar Biol 148:1339–1356

    Google Scholar 

  • Fossi MC, Minutoli R, Guglielmo L (2001) Preliminary results of biomarker responses in zooplankton of brackish environments. Mar Pollut Bull 42:745–748

    CAS  Google Scholar 

  • Garnacho E, Peck LS, Tyler PA (2001) Effects of copper exposure on the metabolism of the mysid Praunus flexuosus. J Exp Mar Biol Ecol 265:181–201

    CAS  Google Scholar 

  • Gentile SM, Gentile JH, Walker J, Heltshe JF (1982) Chronic effects of cadmium on two species of mysid shrimp: Mysidopsis bahia and Mysidopsis bigelowi. Hydrobiologia 93:195–204

    CAS  Google Scholar 

  • Gentile JH, Gentile SM, Hoffman G, Heltshe JF, Hairston N Jr (1983) The effects of a chronic mercury exposure on survival, reproduction and population dynamics of Mysidopsis bahia. Environ Toxicol Chem 2:61–68

    CAS  Google Scholar 

  • Ghekiere A (2006) Study of invertebrate-specific effects of endocrine disrupting chemicals in the estuarine mysid Neomysis integer (Leach 1814). PhD thesis, Ghent University, Ghent, Belgium

  • Ghekiere A, Verslycke T, De Smet L, Van Beeumen J, Janssen CR (2004) Purification and characterization of vitellin from the estuarine mysid Neomysis integer (Crustacea: Mysidacea). Comp Biochem Physiol A 138:427–433

    Google Scholar 

  • Ghekiere A, Fenske M, Verslycke T, Tyler C, Janssen CR (2005) Development of a quantitative enzyme-linked immunosorbent assay for vitellin in the mysid Neomysis integer (Crustacea: Mysidacea). Comp Biochem Physiol A 142:43–49

    Google Scholar 

  • Ghekiere A, Fockedey N, Verslycke T, Vincx M, Janssen CR (2006a) Marsupial development in the mysid Neomysis integer (Crustacea: Mysidacea) to evaluate the effects of environmental chemicals. Ecotoxicol Environ Saf, DOI: 10.1016/j.ecoenv.2006.02.008

  • Ghekiere A, Verslycke T, Janssen CR (2006b) Effects of methoprene, nonylphenol and estrone on the vitellogenesis of the mysid Neomysis integer. Gen Comp Endocrinol 147:190–195

    CAS  Google Scholar 

  • Ghekiere A, Verslycke T, Fockedey N, Janssen CR (2006c) Non-target effects of the insecticide methoprene on molting in the estuarine crustacean Neomysis integer (Crustacea: Mysidacea). J Exp Mar Biol Ecol 332:226–234

    CAS  Google Scholar 

  • Gorokhova E (1998) Exploring and modeling the growth dynamics of Mysis mixta. Ecol Modell 110:45–54

    CAS  Google Scholar 

  • Gorokhova E (2002) Moult cycle and its chronology in Mysis mixta and Neomysis integer (Crustacea, Mysidacea): implications for growth assessment. Mar Biol 278:179–194

    Google Scholar 

  • Gorokhova E, Hansson S (2000) Elemental composition of Mysis mixta (Crustacea, Mysidacea) and energy costs of reproduction and embryogenesis under laboratory conditions. J Exp Mar Biol Ecol 246:103–123

    CAS  Google Scholar 

  • Greenwood JG, Jones MB, Greenwood J (1989) Salinity effects on brood maturation of the mysid crustacean Mesopodopsis slabberi. J Mar Biolog Assoc UK 69:683–694

    Google Scholar 

  • Gross MY, Maycock DS, Thorndyke MC, Morritt D, Crane M (2001) Abnormalities in sexual development of the amphipod Gammarus pulex (L.) found below sewage treatment works. Environ Toxicol Chem 20:1792–1797

    CAS  Google Scholar 

  • Harmon VL, Langdon CJ (1996) A 7-D toxicity test for marine pollutants using the Pacific mysid Mysidopsis intii. 2. Protocol evaluation. Environ Toxicol Chem 15:1824–1830

    CAS  Google Scholar 

  • Huberman A (2000) Shrimp endocrinology. A review. Aquaculture 191:191–208

    CAS  Google Scholar 

  • Hunt JW, Anderson BS, Turpen SL, Englund MA, Piekarski W (1997) Precision and sensitivity of a seven-day growth and survival toxicity test using the west coast marine mysid crustacean Holmesimysis costata. Environ Toxicol Chem 16:824–834

    CAS  Google Scholar 

  • Hunt JW, Anderson BS, Phillips BM, Tjeerdema RS, Puckett HM, Stephenson M, Tucker DW, Watson D (2002) Acute and chronic toxicity of nickel to marine organisms: implications for water quality criteria. Environ Toxicol Chem 21:2423–2430

    CAS  Google Scholar 

  • James MO, Boyle SM (1998) Cytochromes P450 in crustacea. Comp Biochem Physiol C 121:157–172

    CAS  Google Scholar 

  • Janer G, LeBlanc GA, Porte C (2005a) Androgen metabolism in invertebrates and its modulation by xenoandrogens—A comparative study. Ann NY Acad Sci 1040:354–356

    CAS  Google Scholar 

  • Janer G, LeBlanc GA, Porte C (2005b) A comparative study on androgen metabolism in three invertebrate species. Gen Comp Endocrinol 143:211–221

    CAS  Google Scholar 

  • Keay J, Bridgham JT, Thornton JW (2006) The Octopus vulgaris estrogen receptor is a constitutive transcriptional activator: evolutionary and functional implications. Endocrinology 147:3861–3869

    CAS  Google Scholar 

  • Khan A, Barbieri J, Khan S, Sweeney F (1992) A new short-term mysid toxicity test using sexual maturity as an endpoint. Aquat Toxicol 23:97–105

    CAS  Google Scholar 

  • Kline ER, Stekoll MS (2000) The role of calcium and sodium in toxicity of an effluent to mysid shrimp (Mysidopsis bahia). Environ Toxicol Chem 19:234–241

    CAS  Google Scholar 

  • Köhler H-R, Kloas W, Schirling M, Lutz I, Reye AL, Langen J-S, Triebskorn R, Nagel R, Schönfelder G (2006) Sex steroid receptor evolution and signalling in aquatic invertebrates. Ecotoxicology, DOI: 10.1007/s10646-006-0111-3

  • Kuhn A, Munns WR Jr, Poucher S, Champlin D, Lussier S (2000) Prediction of population-level response from mysid toxicity test data using population modeling techniques. Environ Toxicol Chem 19:2364–2371

    CAS  Google Scholar 

  • Kuhn A, Munns WR Jr, Champlin D, McKinney R, Tagliabue M, Serbst J, Gleason T (2001) Evaluation of the efficacy of extrapolation population modeling to predict the dynamics of Americamysis bahia populations in the laboratory. Environ Toxicol Chem 20:213–221

    CAS  Google Scholar 

  • Langdon CJ, Harmon VL, Vance MM, Kreeger KE, Kreeger DA, Chapman GA (1996) A 7-D toxicity test for marine pollutants using the Pacific mysid Mysidopsis intii. 1. Culture and protocol development. Environ Toxicol Chem 15:1815–1823

    CAS  Google Scholar 

  • LeBlanc GA (2006) Crustacean endocrine toxicology: a review. Ecotoxicology, DOI: 10.1007/s10646-006-0115-z

  • LeBlanc GA, McLachlan JB (2000) Changes in the metabolic elimination profile of testosterone following exposure of the crustacean Daphnia magna to tributyltin. Ecotoxicol Environ Saf 45:296–303

    CAS  Google Scholar 

  • Lee RF, Noone T (1995) Effect of reproductive toxicants on lipovitellin in female blue crab. Callinectes sapidus Mar Environ Res 39:151–154

    CAS  Google Scholar 

  • Lejeusne C, Chevaldonné P (2005) Population structure and life history of Hemimysis margalefi (Crustacea : Mysidacea), a ‘thermophilic’ cave-dwelling species benefiting from the warming of the NW Mediterranean. Mar Ecol Progr Ser 287:189–199

    Google Scholar 

  • Lezzi M, Bergman T, Mouillet JF, Henrich VC (1999) The ecdysone receptor puzzle. Arch Insect Biochem Physiol 41:99–106

    CAS  Google Scholar 

  • Linden E, Lehtiniemi M, Viitasalo M (2003) Predator avoidance behaviour of Baltic littoral mysids Neomysis integer and Praunus flexuosus. Mar Biol 143:845–850

    Google Scholar 

  • Lussier SM, Kuhn A, Chammas MJ, Sewall J (1988) Techniques for the laboratory culture of Mysidopsis species (Crustacea: Mysidacea). Environ Toxicol Chem 7:969–977

    Google Scholar 

  • Martin M, Hunt JW, Anderson BS, Turpen SL, Palmer FH (1989) Experimental evaluation of the mysid Holmesimysis costata as a test organism for effluent toxicity testing. Environ Toxicol Chem 8:1003–1012

    CAS  Google Scholar 

  • Mauchline J (1980) The biology of mysids and euphausiids. Adv Mar Biol 18:1–369

    Google Scholar 

  • McKenney CL (1994) Alterations in growth, reproduction, and energy metabolism of estuarine crustaceans as indicators of pollutant stress. In: Salanki DJJ, Hughes GM (eds) Biological monitoring of the environment: a manual of methods. CAB International, Wallingford, UK, pp 111–115

    Google Scholar 

  • McKenney CL (1996) The combined effects of salinity and temperature on various aspects of the reproductive biology of the estuarine mysid, Mysidopsis bahia. Invertebr Reprod Dev 29:9–18

    Google Scholar 

  • McKenney CL (1998) Physiological dysfunction in estuarine mysids and larval decapods with chronic pesticide exposure. In: Wells PG, Lee K, Blaise C (eds) Microscale testing in aquatic toxicology: advances, techniques, and practice. CRC Press, Boca Raton, FL, USA, pp 465–476

    Google Scholar 

  • McKenney CL (1999) Hormonal processes in decapod crustacean larvae as biomarkers of endocrine disrupting chemicals in the marine environment. In: Henshel DS, Black MC, Harrass MC (eds) Environmental toxicology and risk assessment: standardization of biomarkers for endocrine disruption and environmental assessment, vol 8. ASTM STP 1364, American Society for Testing and Materials, West Conshohocken, PA, USA, pp 119–135

    Google Scholar 

  • McKenney CL (2005) The influence of insect juvenile hormone agonists on metamorphosis and reproduction in estuarine crustaceans. Integr Comp Biol 45:97–105

    CAS  Google Scholar 

  • McKenney CL, Celestial DM (1995) Interactions among salinity, temperature, and age on growth of the estuarine mysid Mysidopsis bahia reared in the laboratory through a complete life cycle: I. Body mass and age-specific growth rate. J Crustacean Biol 15:169–178

    Google Scholar 

  • McKenney CL, Celestial DM (1996) Modified survival, growth and reproduction in an estuarine mysid (Mysidopsis bahia) exposed to a juvenile hormone analogue through a complete life cycle. Aquat Toxicol 35:11–20

    CAS  Google Scholar 

  • McKenney CL, Matthews E, Lawrence DA, Shirley MA (1985) Effects of ground ULV applications of fenthion on estuarine biota IV. Lethal and sublethal responses of an estuarine mysid. J Fla Anti-Mosq Assoc 56:72–75

    Google Scholar 

  • Medesani DA, Greco LSL, Rodriguez EM (2004) Disruption of endocrine regulation of glycemia levels by cadmium and copper in the estuarine crab Chasmagnathus granulata. Bull Environ Contam Toxicol 73:942–946

    CAS  Google Scholar 

  • Mees J, Fockedey N, Dewicke A, Janssen CR, Sorbe J-C (1995) Aberrant individuals of Neomysis integer and other Mysidacea: intersexuality and variable telson morphology. Neth J Aquat Ecol 29:161–166

    Google Scholar 

  • Mees J, Jones MB (1998) The hyperbenthos. Oceanogr Mar Biol Annu Rev 35:221–255

    Google Scholar 

  • Morris S, Airriess CN (1998) Integration of physiological responses of crustaceans to environmental challenge. S Afr J Zool 33:87–106

    Google Scholar 

  • Nel R, McLachlan A, Winter D (1999) The effect of sand particle size on the burrowing ability of the beach mysid Gastrosaccus psammodytes Tattersall. Est Coast Shelf Sci 48:599–604

    Google Scholar 

  • Nimmo DR, Hamaker TL (1982) Mysids in toxicity testing—A review. Hydrobiologia 93:171–178

    CAS  Google Scholar 

  • Nimmo DR, Mirenda RJ, Carlson CA, Williams RR (1991) Culturing the estuarine mysid Mysidopsis bahia: a synopsis of three case studies. Am Fish Soc Symp 9:160–168

    Google Scholar 

  • Nipper MG, Williams EK (1997) Culturing and toxicity testing with the New Zealand mysid Tenagomysis novae-zealandiae, with a summary of toxicological research in this group. Aust J Ecotoxicol 3:117–129

    Google Scholar 

  • Noppe H, Verslycke T, De Wulf E, Verheyden K, Monteyne E, Van Caeter P, Janssen CR, De Brabander HF (2006) Occurrence of estrogens in the Scheldt estuary: a 2-year survey. Ecotox Environ Saf, DOI: 10.1016/j.ecoenv.2006.04.005

  • Oberdörster E, Rittschof D, LeBlanc GA (1998) Alteration of (14C)-testosterone metabolism after chronic exposure of Daphnia magna to tributyltin. Arch Environ Contam Toxicol 34:21–25

    Google Scholar 

  • Oda S, Tatarazako N, Watanabe H, Moriata M, Iguchi T (2005a) Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb. Chemosphere 60:74–78

    CAS  Google Scholar 

  • Oda S, Tatarazako N, Watanabe H, Moriata M, Iguchi T (2005b) Production of male neonates in Daphnia magna (Cladocera, Crustacea) exposed to juvenile hormones and their analogs. Chemosphere 61:1168–1174

    CAS  Google Scholar 

  • OECD (2006) Detailed review paper on aquatic arthropods in life cycle toxicity tests with an emphasis on developmental, reproductive and endocrine disruptive effects. OECD Environment Health and Safety Publications, Series on Testing and Assessment No. 55, Paris, France

  • Oehlmann J, Schulte-Oehlmann U (2003) Endocrine disruption in invertebrates. Pure Appl Chem 75:2207–2218

    CAS  Google Scholar 

  • Oetken M, Bachmann J, Schulte-Oehlmann U, Oehlmann J (2004) Evidence for endocrine disruption in invertebrates. Intern Rev Cytol A 236:1–44

    Article  CAS  Google Scholar 

  • Poelmans S, Verslycke T, Monteyne E, Noppe H, Verheyden K, Janssen CR, De Brabander HF (2006) Testosterone metabolism in Neomysis integer following exposure to benzo(a)pyrene. Comp Biochem Physiol B 144:405–412

    CAS  Google Scholar 

  • Rademacher K, Kils U (1996) Predator/prey dynamics of fifteen-spined stickleback (Spinachia spinachia) and the mysid (Neomysis integer). Arch Fish Mar Res 43:171–181

    Google Scholar 

  • Raimondo S, McKenney CL (2005a) Projecting population-level responses of mysids exposed to an endocrine disrupting chemical. Integr Comp Biol 45:151–157

    CAS  Google Scholar 

  • Raimondo S, McKenney CL (2005b) Projected population-level effects of thiobencarb exposure on the mysid, Americamysis bahia, and extinction probability in a concentration-decay exposure system. Environ Toxicol Chem 24:564–572

    CAS  Google Scholar 

  • Raimondo S, McKenney CL (2006) From individuals to populations: modeling toxicity data across two levels of biological organization. Environ Toxicol Chem 25:589–596

    CAS  Google Scholar 

  • Ranson H, Nikou D, Hutchinson M, Wang X, Roth CW, Hemingway J, Collins FH (2002) Molecular analysis of multiple cytochromes P450 genes from the malaria vector, Anopheles gambiae. Insect Mol Biol 11:409–418

    CAS  Google Scholar 

  • Reitsema L, Neff JM (1980) A recirculating artificial seawater system for the laboratory culture of Mysidopsis almyra (Crustacea: Pericarida). Estuaries 3:321–323

    Google Scholar 

  • Remerie T, Bulckaen B, Calderon J, Deprez T, Mees J, Vanfleteren J, Vanreusel A, Vierstraete A, Vincx M, Wittmann KJ, Wooldridge T (2004) Phylogenetic relationships within the Mysidae (Crustacea, Peracarida, Mysida) based on nuclear 18S ribosomal RNA sequences. Mol Phylogen Evol 32:770–777

    CAS  Google Scholar 

  • Remerie T, Bourgois T, Vanreusel A (2005) Morphological differentiation between geographically separated populations of Neomysis integer and Mesopodopsis slabberi (Crustacea, Mysida). Hydrobiologia 549:239–250

    Google Scholar 

  • Ritz DA, Metillo EB (1998) Costs and benefits of swarming behaviour in mysids: Does orientation and position in the swarm matter? J Mar Biol Assoc UK 78:1011–1014

    Article  Google Scholar 

  • Roast SD, Thompson RS, Donkin P, Widdows J, Jones MB (1999a) Toxicity of the organophosphate pesticides chlorpyrifos and dimethoate to Neomysis integer (Crustacea, Mysidacea). Water Res 33:319–326

    CAS  Google Scholar 

  • Roast SD, Widdows J, Jones MB (1999b) Respiratory responses of the estuarine mysid Neomysis integer (Peracarida, Mysidacea) in relation to a variable environment. Mar Biol 133:643–649

    Google Scholar 

  • Roast SD, Widdows J, Jones MB (1999c) Scope for growth of the estuarine mysid Neomysis integer (Peracarida: Mysidacea): effects of the organophosphate pesticide chlorpyrifos. Mar Ecol Prog Ser 191:233–241

    CAS  Google Scholar 

  • Roast SD, Widdows J, Jones MB (2001) Impairment of mysid (Neomysis integer) swimming ability: an environmentally realistic assessment of the impact of cadmium exposure. Aquat Toxicol 52:217–227

    CAS  Google Scholar 

  • Roast SD, Widdows J, Jones MB (2002) Behavioural responses of estuarine mysids to hypoxia and disruption by cadmium. Mar Environ Res 54:319–323

    CAS  Google Scholar 

  • Roast SD, Widdows J, Pope N, Jones MB (2004) Sediment-biota interactions: mysid feeding activity enhances water turbidity and sediment erodability. Mar Ecol Prog Ser 281:145–154

    Google Scholar 

  • Sanders MB, Billinghurst Z, Depledge MH, Clare AS (2005) Larval development and vitellin-like protein expression in Palaemon elegans larvae following xeno-oestrogen exposure. Integr Comp Biol 45:51–60

    CAS  Google Scholar 

  • Sardo AM, Azeiteiro UM, Pereira L, Morgado F, Soares AMVM (2005a) Histological evaluation of the exposure to 3,4-dichloroaniline in the estuarine mysid Mesopodopsis slabberi, under experimental conditions. Fres Environ Bull 14:579–583

    CAS  Google Scholar 

  • Sardo AM, Morgado F, Soares AMVM (2005b) Mesopodopsis slabberi (Crustacea : Mysidacea): can it be used in toxicity tests? Ecotox Environ Saf 60:81–86

    CAS  Google Scholar 

  • Schirling M, Jungmann D, Ladewig V, Ludwichowski KU, Nagel R, Kohler HR, Triebskorn R (2006) Bisphenol A in artificial indoor streams: II Stress response and gonad histology in Gammarus fossarum (Amphipoda). Ecotoxicology 15:143–156

    CAS  Google Scholar 

  • Smith RL, Hargreaves BR (1984) Oxygen consumption in Neomysis americana (Crustacea: Mysidacea) and the effects of naphthale exposure. Mar Biol 79:109–116

    CAS  Google Scholar 

  • Snape JR, Maund SJ, Pickford DB, Hutchinson TH (2004) Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat Toxicol 67:143–154

    CAS  Google Scholar 

  • Solé M, Livingstone DR (2005) Components of the cytochrome P450-dependent monooxygenase system and ‘NADPH-independent benzo[a]pyrene hydroxylase’ activity in a wide range of marine invertebrate species. Comp Biochem Physiol C 141:20–31

    Google Scholar 

  • Spears T, DeBry RW, Abele LG, Chodyla K (2005) Peracarid monophyly and interordinal phylogeny inferred from nuclear small-subunit ribosomal DNA sequences (Crustacea: Malacostraca: Peracarida). Proc Biol Soc Wash 118:117–157

    Google Scholar 

  • Subramoniam T (2000) Crustacean ecdysteroids in reproduction and embryogenesis. Comp Biochem Physiol C 125:135–156

    CAS  Google Scholar 

  • Thornton JW (2003) Nonmammalian nuclear receptors: Evolution and endocrine disruption. Pure Appl Chem 75:1827–1839

    CAS  Google Scholar 

  • Tijet N, Helvig C, Feyereisen R (2001) The cytochrome P450 superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene 262:189–198

    CAS  Google Scholar 

  • Tuberty SR, Nates SF, McKenney CL Jr (2002) Polyclonal antisera against estuarine crustacean vitellins: a molecular approach to reproductive endocrinology and toxicology. In: Escobar-Briones E, Alvarez F (eds) Modern approaches to the study of Crustacea. Kluwer Academic-Plenum Publishers, New York, NY, USA, pp 29–37

    Google Scholar 

  • USEPA (1995a) Short-term methods for estimating the chronic toxicity of effluents and surface waters to marine and estuarine organisms, 3rd edn. EPA-600-4-91-002 US Environmental Protection Agency, Cincinnati, OH, USA

  • USEPA (1995b) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coats marine and estuarine organisms, 1st edn. EPA-600-R-95-136. US Environmental Protection Agency, Washington, DC, USA

  • USEPA (1997) Office of pollution prevention and toxic substances (OPPTS) test guidelines. Series 850 on ecological effects. US Environmental Protection Agency, Washington, DC, USA

  • USEPA (2002a) Draft detailed review paper on mysid life cycle toxicity test. EPA/68-W-01-023. Battelle, Columbus, OH, USA

  • USEPA (2002b) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edn. EPA-821-R-02-012. US Environmental Protection Agency, Washington, DC, USA

  • Vandenbergh GF, Adriaens D, Verslycke T, Janssen CR (2003) Effects of 17 alpha-ethinylestradiol on sexual development of the amphipod Hyalella azteca. Ecotox Environ Saf 54:216–222

    CAS  Google Scholar 

  • Verslycke T (2003) Endocrine disruption in the estuarine invertebrate Neomysis integer (Crustacea: Mysidacea). PhD thesis, Ghent University, Ghent, Belgium, 224p

  • Verslycke T, De Wasch K, De Brabander HF, Janssen CR (2002) Testosterone metabolism in the estuarine mysid Neomysis integer (Crustacea; Mysidacea): identification of testosterone metabolites and endogenous vertebrate-type steroids. Gen Comp Endocrinol 126:190–199

    CAS  Google Scholar 

  • Verslycke T, Poelmans S, De Wasch K, Vercauteren J, Devos C, Moens L, Sandra P, De Brabander HF, Janssen CR (2003a) Testosterone metabolism in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following tributyltin exposure. Environ Toxicol Chem 22:2030–2036

    CAS  Google Scholar 

  • Verslycke T, Vangheluwe M, Heijerick D, De Schamphelaere K, Van Sprang P, Janssen CR (2003b) The toxicity of metal mixtures to the estuarine mysid Neomysis integer under changing salinity. Aquat Toxicol 64:307–315

    CAS  Google Scholar 

  • Verslycke T, Vercauteren J, DeVos C, Moens L, Sandra P, Janssen CR (2003c) Cellular energy allocation in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following TBTCl exposure. J Exp Mar Biol Ecol 288:167–179

    CAS  Google Scholar 

  • Verslycke T, Fockedey N, McKenney CL, Roast SD, Jones MB, Mees J, Janssen CR (2004a) Mysids as potential test organisms for the evaluation of environmental endocrine disruption: a review. Environ Toxicol Chem 23:1219–1234

    CAS  Google Scholar 

  • Verslycke T, Ghekiere A, Janssen CR (2004b) Seasonal and spatial patterns in cellular energy allocation in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) of the Scheldt estuary. J Exp Mar Biol Ecol 306:245–267

    Google Scholar 

  • Verslycke T, Poelmans S, De Wasch K, De Brabander HF, Janssen CR (2004c) Testosterone and energy metabolism in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following exposure to endocrine disruptors. Environ Toxicol Chem 23:1289–1296

    CAS  Google Scholar 

  • Verslycke T, Roast SD, Widdows J, Jones MB, Janssen CR (2004d) Cellular energy allocation and scope for growth in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following chlorpyrifos exposure: a method comparison. J Exp Mar Biol Ecol 306:1–16

    CAS  Google Scholar 

  • Verslycke T, Vethaak AD, Arijs K, Janssen CR (2005) Flame retardants, surfactants and organotins in sediment and mysid shrimp of the Scheldt estuary (The Netherlands). Environ Poll 136:19–31

    CAS  Google Scholar 

  • Viitasalo S, Viitasalo M (2004) Predation by the mysid shrimps Mysis mixta and M. relicta on benthic eggs of Bosmina longispina maritima (Cladocera) in the northern Baltic Sea. Mar Ecol Prog Ser 281:155–163

    Google Scholar 

  • Volz DC, Chandler GT (2004) An enzyme-linked immunosorbent assay for lipovitellin quantification in copepods: a screening tool for endocrine toxicity. Environ Toxicol Chem 23:298–305

    CAS  Google Scholar 

  • Ward SH (1984) A system for laboratory rearing of the mysid, Mysidopsis bahia Molenock. Progress Fish-Culturist 46:170–175

    Google Scholar 

  • Waring RH, Harris RM (2005) Endocrine disrupters: a human risk? Mol Cell Endocrinol 244:2–9

    CAS  Google Scholar 

  • Webb P, Wooldridge T, Schlacher T (1997) Osmoregulation and spatial distribution in four species of mysid shrimps. Comp Biochem Physiol A 117:427–431

    Google Scholar 

  • Wildgust MA, Jones MB (1998) Salinity change and the toxicity of the free cadmium ion (Cd(aq)2+) to Neomysis integer (Crustacea: Mysidacea). Aquat Toxicol 41:187–192

    CAS  Google Scholar 

  • Winkler G, Greve W (2002) Laboratory studies of the effect of temperature on growth, moulting and reproduction in the co-occurring mysids Neomysis integer and Praunus flexuosus. Mar Ecol Prog Ser 235:177–188

    Google Scholar 

  • Wittmann KJ (1984) Ecophysiology of marsupial development and reproduction in Mysidacea (Crustacea). Oceanogr Mar Biol Annu Rev 22:393–428

    Google Scholar 

  • Wortham NJL, Price PW (2002) Marsupial developmental stages in Americamysis bahia (Mysida: Mysidae). J Crustacean Biol 22:98–112

    Google Scholar 

  • Yan T, Zhou MJ, Tan ZJ, Li ZY, Li J, Yu RC, Wang LP (2003) Application of Neomysis awatschensis as a standard marine toxicity test organism in China. J Environ Sci China 15:791–795

    CAS  Google Scholar 

  • Yokota H, Sudo Y, Yakabe Y (2005) Development of an in vitro binding assay with ecdysone receptor of mysid shrimp. In: Proceedings of the 26th annual meeting of the society of environmental toxicology and chemistry, Baltimore, MD

  • Zou EM (2005) Impacts of xenobiotics on crustacean molting: the invisible endocrine disruption. Integr Comp Biol 45:33–38

    CAS  Google Scholar 

  • Zou EM, Bonvillain R (2004) Chitinase activity in the epidermis of the fiddler crab, Uca pugilator, as an in vivo screen for molt-interfering xenobiotics. Comp Biochem Physiol C 139:225–230

    Google Scholar 

Download references

Acknowledgment

Tim Verslycke was supported by a Fellowship of the Belgian American Educational Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Verslycke.

Additional information

This manuscript is contribution number 1259 of the US Environmental Protection Agency Office of Research and Development’s National Health and Environmental Effects Research Laboratory Gulf Ecology Division. The information in this document does not necessarily reflect the views and policies of the USEPA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verslycke, T., Ghekiere, A., Raimondo, S. et al. Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals. Ecotoxicology 16, 205–219 (2007). https://doi.org/10.1007/s10646-006-0122-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-006-0122-0

Keywords

Navigation