Skip to main content

Advertisement

Log in

Influence of Non-point Source Pollution on Riverine Fish Assemblages in South West France

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The relationship between non-point source pollution (NSP) and fish assemblages in the Garonne basin, SW France was studied. Two independent data sets were coupled, one containing 20 physico-chemical variables and another containing 40 fish species in 84 study sites. Species were classified in guilds according to their feeding habitat and their diet composition. The physico-chemical variables were log-transformed and standardized for a factor analysis in which they were grouped into four factors which accounted for 80% of the total variability. These were named according to factor loadings (i.e. a measure of the variance of a given variable) whose absolute values were larger than 0.5. Hence, the first factor (F1) was formed by variables linked to NSP, most notably by sodium, chloride, potassium, orthophosphates, nitrites and chemical oxygen demand. The second factor (F2) was related to alkalinity (i.e. bicarbonates, calcium, conductivity and pH). The third factor (F3) included oxygen saturation rate and dissolved oxygen, and F4 combined both temperature and flow. Factor scores (i.e. weighted sums of the original variables) were then introduced in stepwise multiple regression models as explanatory variables of log-transformed fish species richness of trophic guilds. The NSP factor was significant (p < 0.05) for the following models: benthic omnivores (r 2 = 0.66), all species (r 2 = 0.65), total benthic species (r 2 = 0.63), total water-column species (r 2 = 0.57), benthic invertivores (r 2 = 0.32) and water-column invertivores (r 2 = 0.16). The guilds for which NSP was not significant were water-column omnivores, water-column piscivores and benthic detritivores. Thus, there was evidence of an inversely proportional association, though not causation, of NSP with species richness of riverine fish trophic guilds on a large spatio-temporal scale. Fish assemblages may respond in different ways to NSP depending on their species composition, on the region and on the scale, and not only to physico-chemical properties of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adams Kszos L., Beauchamp J.J., Stewart A.J., (2003). Toxicity of lithium to three freshwater organisms and the antagonistic effect of sodiumEcotoxicology 12: 427–37

    Article  PubMed  Google Scholar 

  • AEAG (Agence de l’Eau Adour-Garonne) (1997). Atlas et Données sur l’Eau. Toulouse: DIREN de Bassin Adour-Garonne

  • Alabaster, J.S. and Llyod, R. (1982). Water Quality Criteria for Freshwater Fish. Rome and London: F.A.O. and Butterworth Scientific

  • Amisah S., Cowx I.G., (2000). Response of the fish populations of the River Don in South Yorkshire to water quality and habitat improvementsEnviron. Pollut. 108: 191–9

    Article  PubMed  CAS  Google Scholar 

  • Andres S., Ribeyre F., Tourencq J.N., Boudou A., (2000). Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France)Sci. Total Environ. 248: 11–25

    Article  PubMed  CAS  Google Scholar 

  • Angelier, E. (2001). Ecologie des Eaux Courantes. Paris: Editions Tec & Doc

  • Angermeier P.L., (1995). Ecological attributes of extinction-prone species: loss of freshwater fishes of VirginiaConserv. Biol. 9: 143–58

    Article  Google Scholar 

  • Angermeier P.L., Smogor R.A., (1995). Estimating number of species and relative abundances in stream-fish communities: effects of sampling effort and discontinuous spatial distributionsCan. J. Fish. Aquat. Sci. 52: 936–49

    Google Scholar 

  • Ankley G.T., Katko A., Arthur J.W., (1990). Identification of ammonia as an important sediment-associated toxicant in the lower Fox river and Green Bay, WisconsinEnviron. Toxicol. Chem. 9: 313–22

    Article  CAS  Google Scholar 

  • Arrignon J., (1998). Aménagement Piscicole des Eaux Douces. Paris: Editions Tec & Doc

  • Berkman H.E., Rabeni C.F., (1987). Effect of siltation on fish communitiesEnviron. Biol. Fish. 50: 133–47

    Google Scholar 

  • Berrebi-dit-Thomas R., Belliard J., Boët P., (1998). Caractéristiques des peuplements piscicoles sensibles aux altérations du milieu dans les cours d’eau du bassin de la SeineBull. Franç. Pêche Piscicult. 348: 47–64

    Google Scholar 

  • Bismuth, C. (2000). Toxicologie Clinique. Paris: Médecine-Sciences, Flammarion

  • Cooper S., Diehl S., Kratz K., Sarnelle O., (1998). Implications of scale for patterns and processes in stream ecologyAust. J. Ecol. 23: 27–40

    Article  Google Scholar 

  • Crisp D.T., (1996). Environmental requirements of common European salmonid fish species in freshwater with particular reference to physical and chemical aspectsHydrobiologia 323: 201–21

    Article  Google Scholar 

  • Cuinat R., (1971). Principaux caractères démographiques observés dans 50 rivières à truites françaises. Influence de la pente et du calciumAnn. Hydrobiol. 2: 187–67

    Google Scholar 

  • Dauba F., Lek S., Mastrorillo S., Copp G.H., (1997). Long-term recovery of macrobenthos and fish assemblages after water pollution abatement measures in the river Petite Baïse (France)Arch. Environ. Contam. Toxicol. 33: 277–85

    Article  CAS  Google Scholar 

  • Dauta A., Lapaquellerie Y., Maillet N., (1999). Role of the dams on the River Lot on two types of pollution: point-sources (cadmium) and non-point sources (phosphorus)Hydrobiologia 410: 325–9

    Article  CAS  Google Scholar 

  • Eklöv A.G., Greenberg L.A., Brönmark C., Larsson P., Berglund O., (1998). Response of stream fish to improved water quality: a comparison between the 1960s and 1990s Freshwat. Biol. 40: 771–82

    Article  Google Scholar 

  • Eklöv A.G., Greenberg L.A., Brönmark C., Larsson P., Berglund O., (1999). Influence of water quality, habitat and species richness on brown trout populationsJ. Fish Biol. 54: 33–43

    Article  Google Scholar 

  • Etchanchu D., Probst J.L., (1988). Evolution of the chemical composition of the Garonne river during the period 1971–1984Hydrol. Sci. J. 33: 243–56

    Article  CAS  Google Scholar 

  • Everitt, B.S. and Dunn, G. (1991). Applied Multivariate Data Analysis. London: Edward Arnold

  • Fausch K.D., Lyons J., Karr J.R., Angermeier P.L., (1990). Fish communities as indicators of environmental degradationAm. Fish. Soc. Symp. 8: 123–44

    Google Scholar 

  • Fitzgerald D.G., Kott E., Lanno R.P., Dixon D.G., (1998). A quarter century of change in the fish communities of three small streams modified by anthropogenic activitiesJ. Aquat. Ecosyst. Stress Recovery 6: 111–27

    Article  Google Scholar 

  • Gozlan R.E., Mastrorillo S., Dauba F., Tourenq J.N., Copp G.H., (1998). Multi-scale analysis of habitat use during late summer for 0+ fishes in the River Garonne (France)Aquat. Sci. 60: 99–117

    Article  Google Scholar 

  • Harding J.S., Benfield E.F., Bolstad P.V., Helfman G.S., Jones E.B.D., (1998). Stream biodiversity: the ghost of land use pastProc. Natl. Acad. Sci. USA 95: 14843–7

    Article  PubMed  CAS  Google Scholar 

  • Hart B.T., Maher B., Lawrence I., (1999). New generation water quality guidelines for ecosystem protectionFreshwat. Biol. 41: 347–59

    Article  Google Scholar 

  • Havens K.E., (1999). Correlation is not causation: a case study of fisheries, trophic state and acidity in Florida (USA) lakesEnviron. Pollut. 106: 1–4

    Article  CAS  Google Scholar 

  • Hendry K., Cragg-Hine D., O’Grady M., Sambrook H., Stephen A., (2003). Management of habitat for rehabilitation and enhancement of salmonid stocksFish. Res. 62: 171–92

    Article  Google Scholar 

  • Hughes R.M., Gammon J.R., (1987). Longitudinal changes in fish assemblages and water quality in the Willamette River, OregonTrans. Am. Fish. Soc. 116: 196–209

    Article  Google Scholar 

  • Hughes R.M., Kaufman P.R., Herlihy A.T., Kincaid T.M., Reynolds L., Larsen D.P., (1998). A process for developing and evaluating indices of fish assemblage integrityCan. J. Fish. Aquat. Sci. 55: 1618–31

    Article  Google Scholar 

  • Hutagalung R.A., Lim P., Belaud A., Lagarrigue T., (1997). Effets globaux d’une agglomération sur la typologie ichtyenne d’un fleuve: cas de la Garonne à Toulouse (France) Ann. Limnol. 33: 263–79

    Google Scholar 

  • Jackson D.A., Peres-Nieto P.R., Olden J.D., (2001). What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factorsCan. J. Fish. Aquat. Sci. 58: 157–70

    Article  Google Scholar 

  • Kallis G., Butler D., (2001). The EU Water Framework Directive: measures and implicationsWater Policy 3: 125–42

    Article  Google Scholar 

  • Karr J.R., Fausch K.D., Angermeier P.L., Yant P.R., Schlosser I.J., (1986). Assessing biological integrity in running waters: a method and its rationaleIllinois Nat. Hist. Survey Spec. Publ. 5: 1–28

    Google Scholar 

  • Keith P., (2000). The part played by protected areas in the conservation of threatened French freshwater fishBiol. Conserv. 92: 265–73

    Article  Google Scholar 

  • Kestemont P., Didier J., Depiereux E., Micha J.C., (2000). Selecting ichthyological metrics to assess river basin ecological qualityArch. Hydrobiol. Suppl. (Monogr. Stud.) 121: 321–48

    Google Scholar 

  • Kilgour B.W., Barton D.R., (1999). Associations between stream fish and benthos across environmental gradients in southern Ontario, CanadaFreshwat. Biol. 41: 553–66

    Article  Google Scholar 

  • Landis W.G., Yu M.-H., (1999). Introduction to Environmental Toxicology: Impacts of Chemicals upon Ecological Systems CRC Press, Lewis Publishers Boca Raton

    Google Scholar 

  • Leynaud G., Trocherie F., (1980). Effets toxiques des pollutions sur la faune piscicole In: Pesson P., (ed.) La Pollution des Eaux Continentales: Incidence sur les Biocénoses Aquatiques Paris: Gauthier-Villars pp. 147–69

    Google Scholar 

  • Lim P., Labat R., (1979). Récupération d’une rivière polluée: la Petite BaïseAnn. Limnol. 115: 153–71

    Google Scholar 

  • Lyons J., Piette R.R., Niermeyer K.W., (2001). Development, validation, and application of a fish-based index of biotic integrity for Wisconsin’s large warmwater riversTrans. Am. Fish. Soc. 130: 1077–94

    Article  Google Scholar 

  • Manly B.F.J., (1995).Multivariate Statistical Methods: A Primer Chapman & Hall New York

    Google Scholar 

  • Mann R.K.H., (1996). Environmental requirements of European non-salmonid fish in riversHydrobiologia 323: 223–35

    Article  Google Scholar 

  • Matthews W.J., (1998). Patterns in Freshwater Fish Ecology. Chapman & Hall New York

    Google Scholar 

  • Michel P., Oberdorff T., (1995). Feeding habits of fourteen European freshwater fish speciesCybium 19: 5–46

    Google Scholar 

  • Monod G., (2001). Le poisson: cible et révélateur de la pollution chimique. In: Neveu A., Riou C., Bonhome R., Chassin P., Papy F., (Eds) L’Eau dans l’Espace Rural: Vie et Milieux Aquatiques Paris: INRA editions pp. 173–97

    Google Scholar 

  • Oberdorff T., Hughes R.M., (1992). Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Seine basin, FranceHydrobiologia 228: 117–30

    Article  Google Scholar 

  • Oberdorff T., Gilbert E., Lucchetta J.C., (1993). Patterns of fish species richness in the Seine River basin, FranceHydrobiologia 259: 157–67

    Article  Google Scholar 

  • Oberdorff T., Pont D., Hugueny B., Porcher J.P., (2002). Development and validation of a fish-based index for the assessment of ‘river health’ in FranceFreshwat. Biol. 47: 1720–34

    Article  Google Scholar 

  • O’Neill R.V., (1999). Recovery in complex ecosystemsJ. Aquat. Ecosyst. Stress Recovery 6: 181–7

    Google Scholar 

  • Peierls B.L., Carraco N.E., Pace M.L., Cole J.J., (1991). Human influence on river nitrogenNature 350: 386–7

    Article  Google Scholar 

  • Piégay H., Dupont P., Faby J.A., (2002). Questions of water resources management. Feedback on the implementation of the French SAGE and SDAGE plans (1992–2001)Water Policy 4: 239–62

    Article  Google Scholar 

  • Poff N.L., Allan J.D., (1995). Functional organization of stream fish assemblages in relation to hydrologic variabilityEcology 76: 606–27

    Article  Google Scholar 

  • Rahel F.J., Hubert W.A., (1991). Fish assemblage and habitat gradients in a Rocky Mountain-Great Plains stream: biotic zonation and additive patterns of community change Trans. Am. Fish. Soc. 120: 319–32

    Article  Google Scholar 

  • Reash R.J., Pigg J., (1990). Physicochemical factors affecting the abundance and species richness of fishes in the Cimarron riverProc. Oklahoma Acad. Sci. 70: 23–8

    Google Scholar 

  • Resh V.H., Brown A.V., Covich A.P., Gurtz M.E., Hiram W.L., Minshall G.W., Reice S.R., Sheldon A.L., Wallace J.B., Wissmar R.C., (1988). The role of disturbance in stream ecologyJ. North Am. Benthol. Soc. 7: 433–55

    Article  Google Scholar 

  • Revenga C., Murray S., Abramovits J., Hammond A., (1998). Watersheds of the World: Ecological Value and Vulnerability. World Resources Institute Washington

    Google Scholar 

  • Sauvage S., Teissier S., Vervier P., Améziane T., Garabétian F., Delmas F., Caussade B., (2003). A numerical tool to integrate biophysical diversity of a large regulated river: hydrobiogeochemical bases. The case of the Garonne River (France)River Res. Appl. 19: 181–98

    Article  Google Scholar 

  • Schlosser I.J., (1990). Environmental variation, life history attributes, and community structure in stream fishes: implications for environmental management and assessment Environ. Manage. 14: 621–8

    Article  Google Scholar 

  • Schlosser I.J., (1991). Stream fish ecology: a landscape perspectiveBioScience 41: 704–12

    Article  Google Scholar 

  • Scott M.C., Hall L.W., (1997). Fish assemblages as indicators of environmental degradation in Maryland coastal plain streamsTrans. Am. Fish. Soc. 126: 349–60

    Article  Google Scholar 

  • Seegert G., (2000). Considerations regarding development of index of biotic integrity metrics for large riversEnviron. Sci. Policy 3: S99–106

    Article  Google Scholar 

  • Semhi K., Suchet P.A., Clauer N., Probst J.L., (2000). Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basinAppl. Geochem. 15: 865–78

    Article  CAS  Google Scholar 

  • Siligato S., Böhmer J., (2002). Evaluation of biological integrity of a small urban stream system by investigating longitudinal variability of the fish assemblageChemosphere 47: 777–88

    Article  PubMed  CAS  Google Scholar 

  • Simon T.P., Stewart P.M., (1998). Application of an index of biotic integrity for dunal, palustrine wetlands: emphasis on assessment of nonpoint source landfill effects on the Grand Calumet LagoonsAquat. Ecosyst. Health Manage. 1: 63–74

    Article  Google Scholar 

  • Sipponen M., Muotka M., (1996). Factors effecting the demand for recreational fishing opportunities in Finnish lakes during the 1980sFish. Res. 26: 309–323

    Article  Google Scholar 

  • Smogor R.A., Angermeier P.L., (2001). Determining a regional framework for assessing biotic integrity of Virginia streamsTrans. Am. Fish. Soc. 130: 18–35

    Article  Google Scholar 

  • Steiger J., James M., Gazelle F., (1998). Channelization and consequences on floodplain system functioning on the Garonne river, SW FranceRegulat. Rivers: Res. Manage. 14: 13–23

    Article  Google Scholar 

  • Twitchen I.D., Eddy F.B., (1994). Sublethal effects of ammonia on freshwater fish. In: Müller R., Lloyd R., (eds) Sublethal and Chronic Effects of Pollutants on Freshwater Fish Oxford: Fishing News Books and FAO pp. 135–47

    Google Scholar 

  • Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R., Cushing C.E., (1980). The river continuum conceptCan. J. Fish. Aquat. Sci. 37: 130–7

    Article  Google Scholar 

  • Vervier P., Pinheiro A., Fabre A., Pinnay G., Fustec E., (1999). Spatial changes in the modalities of N and P inputs in a rural river networkWater Res. 33: 95–104

    Article  CAS  Google Scholar 

  • Vila-Gispert A., García-Berthou E., Moreno-Amich R., (2002). Fish zonation in a Mediterranean stream: effects of human disturbancesAquat. Sci. 64: 163–70

    Article  Google Scholar 

  • Wang L., Lyons J., Kanehl P.D., Gatti R., (1997). Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streamsFisheries 7: 6–12

    Article  Google Scholar 

  • Wang L., Lyons J., Kanehl P., Bannerman R., Emmons E., (2000). Watershed urbanization and changes in fish communities in southeastern Wisconsin streamsJ. Am. Water Res. 36: 1173–5

    Article  Google Scholar 

  • Wang L., Lyons J., Kanehl P.D., Bannerman R., (2001). Impacts of urbanization on stream habitat and fish across multiple spatial scalesEnviron. Manage. 28: 255–66

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Comments from two anonymous referees notably improved a former version of this paper. Laure Geoffroy provided insightful remarks on ecotoxicological issues as Michele Scardi did for the methodology. Benjamin Esperance contributed with useful information on the Garonne basin and produced Fig. 1. The Adour-Garonne Water Agency allowed the access to their data base. The French Fisheries Council (CSP), regional associations of fishermen and a number of people were involved in sampling surveys. This study was partly sponsored by the Mexican-French Cooperation Program Conacyt-Sfere (no. 131742) and the Association Toulousaine d’Ichthyologie Appliquée.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alonso Aguilar Ibarra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibarra, A.A., Dauba, F. & Lim, P. Influence of Non-point Source Pollution on Riverine Fish Assemblages in South West France. Ecotoxicology 14, 573–588 (2005). https://doi.org/10.1007/s10646-005-0003-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-005-0003-y

Keywords

Navigation