Phylogeographic pattern and population structure of the Persian stone loach, Oxynoemacheilus persa (Heckel 1847) (family: Nemacheilidae) in southern Iran with implications for conservation

Abstract

Phylogeographic pattern, genetic diversity, and historical demography of the endemic loach, Oxynoemacheilus persa, sampled from the endorheic Kor River and exorheic Persis basins in southern Iran, were analyzed using D-loop sequences of mitochondrial DNA. The sequence analysis of 53 specimens detected six haplotypes; all were related closely, yet some were highly localized. Hap_2 with high frequency was restricted to the Persis basin. The ancestral haplotype, Hap_1, was broadly distributed geographically among the Kor River basin populations. The rest of the haplotypes were shared between two populations from the Kor River basin (Hap_4 and Hap_5) or restricted to one of its populations (Hap_3 and Hap_6). AMOVA showed that 42.28% of total variation was related to differences among the basins, while inter- and intra-population differences explained 16.8% and 40.91%, respectively. The Mantel test indicated that the levels of genetic resemblance between populations are moderately dependent on geographic distance (r = 0.669, p = 0.008). All these clues imply that the Kor River and Persis basin populations of O. persa may qualify as two distinct management units. The implication is that contemporary gene flow among these basins has been low enough to have permitted lineage sorting and random drift to promote genetic divergence among these basins that nonetheless were in historical contact recently. The close phylogenetic relationships among other fishes, their previously inferred recent ages of divergence, and the patterns of affinity among them in the Persis and Kor River basins all suggest that these now isolated river systems were interconnected during the Last Glacial Maximum by a Paleo-Kor River and remained so until the sea-level rise of the Early Holocene.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adamson EA, Hurwood DA, Mather PB (2012) Insights into historical drainage evolution based on the phylogeography of the chevron snakehead fish (Channa striata) in the Mekong Basin. Freshwater Biol 57:2211–2229. https://doi.org/10.1111/j.1365-2427.2012.02864.x

    Article  Google Scholar 

  2. Agnarsson I, Kuntner M, Anamthawat-Jónsson K (2012) Current topics in phylogenetics and phylogeography of terrestrial and aquatic systems. InTechOpen, London, UK

    Google Scholar 

  3. Aurelle D, Cattaneo-Berrebi G, Berrebi P (2002) Natural and artificial secondary contact in brown trout (Salmo trutta, L.) in the French western Pyrenees assessed by allozymes and microsatellites. Heredity 89:171–183. https://doi.org/10.1038/sj.hdy.6800120

    CAS  Article  PubMed  Google Scholar 

  4. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  5. Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeogr 36:3–15. https://doi.org/10.1111/j.1365-2699.2008.02032.x

    Article  Google Scholar 

  6. Avise JC (2012) Molecular markers, natural history and evolution. Springer US

    Google Scholar 

  7. Avise JC, Wollenberg K (1997) Phylogenetics and the origin of species. Proc Natl Acad Sci U S A 94:7748–7755. https://doi.org/10.1073/pnas.94.15.7748

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Banarescu P, Nalbant T (1967) The 3rd Danish expedition to Central Asia. Zoological Results 34. Cobitidae (Pisces) from Afghanistan and Iran. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening 129:149–186

    Google Scholar 

  9. Banarescu PM (1995) A generical classification of Nemacheilinae with description of two new genera (Teleostei: Cypriniformes: Cobitidae). Travaux du Muséum National d’Histoire Naturelle “Grigore Antipa” 35:429–496

    Google Scholar 

  10. Bernatchez L, Wilson CC (1998) Comparative phylogeography of nearctic and palearctic fishes. Mol Ecol 7:431–452. https://doi.org/10.1046/j.1365-294x.1998.00319.x

    Article  Google Scholar 

  11. Bouzat JL (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv Genet 11:463–478. https://doi.org/10.1007/s10592-010-0049-0

    Article  Google Scholar 

  12. Briggs JC (2003) Fishes and birds: Gondwana life rafts reconsidered. Syst Biol 52:548–553

    Article  Google Scholar 

  13. Bruford MW, Hanotte O, Brookfield JFY, Burke TA (1992) Single locus and multilocus DNA fingerprinting. In: Hoezel C (ed) Molecular genetics analysis of populations: a practical approach. Oxford University Press, New York, pp 225–269

    Google Scholar 

  14. Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated selection against inbred soay sheep in a free-living island populaton. Evolution 53:1259–1267. https://doi.org/10.1111/j.1558-5646.1999.tb04538.x

    Article  PubMed  Google Scholar 

  15. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Davis CD, Epps CW, Flitcroft RL, Banks MA (2018) Refining and defining riverscape genetics: how rivers influence population genetic structure. WIREs Water 5:e1269. https://doi.org/10.1002/wat2.1269

    Article  Google Scholar 

  17. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

    Article  Google Scholar 

  18. Donaldson KA, Wilson RR (1999) Amphi-panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13:208–213. https://doi.org/10.1006/mpev.1999.0625

    CAS  Article  PubMed  Google Scholar 

  19. Ehrlich PR (1991) Biodiversity studies: science and policy. Science 253:758–762. https://doi.org/10.1126/science.253.5021.758

    CAS  Article  PubMed  Google Scholar 

  20. England PR, Osler GHR, Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (2003) Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential. Conserv Genet 4:595–604. https://doi.org/10.1023/A:1025639811865

    CAS  Article  Google Scholar 

  21. Ersts PJ (2012) Geographic distance matrix generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. http://biodiversityinformatics.amnh.org/open_source/gdmg/. Accessed 2 May 2019

  22. Esmaeili HR, Babai S, Gholamifard A, Pazira A, Gholamhosseini A (2015) Fishes of the Persis region of Iran: an updated checklist and ichthyogeography. Iran J Ichthyol 2:201–222

    Google Scholar 

  23. Esmaeili HR, Gholamifard A, Teimori A, Baghbani S, Coad BW (2010) Xiphophorus hellerii Heckel, 1848 (Cyprinodontiformes, Poeciliidae), a newly introduced fish recorded from natural freshwaters of Iran. J Appl Ichthyol 26:937–938. https://doi.org/10.1111/j.1439-0426.2010.01515.x

    Article  Google Scholar 

  24. Esmaeili HR, Mehraban H, Abbasi K, Keivany Y, Coad BW (2017) Review and updated checklist of freshwater fishes of Iran: taxonomy, distribution and conservation status. Iran J Ichthyol 4:1–114

    Google Scholar 

  25. Esmaeili HR, Sayyadzadeh G, Eagderi S, Abbasi K (2018) Checklist of freshwater fishes of Iran. FishTaxa 3(3):1–95

    Google Scholar 

  26. Esmaeili HR, Teimori A, Sayyadzadeh G, Masoudi M, Reichenbacher B (2014) Phylogenetic relationships of the tooth-carp Aphanius (Teleostei: Cyprinodontidae) in the river systems of southern and south-western Iran based on mtDNA sequences. Zool Middle East 60:29–38. https://doi.org/10.1080/09397140.2014.892329

    Article  Google Scholar 

  27. Esmaeili HR, Teimory A, Khosravi AR (2008) A note on the biodiversity of Ghadamgah spring–stream system in Fars province, southwest Iran. Iran J Anim Biosyst 3:25–36

    Google Scholar 

  28. Ewing GB (2011) Haploviewer. Center for Integrative Bioinformatics Vienna. http://www.cibiv.at/~greg/haploviewer. Accessed 5 May 2019

  29. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864. https://doi.org/10.1046/j.1365-294X.2003.02004.x

    CAS  Article  Google Scholar 

  30. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  31. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. https://doi.org/10.1016/j.biocon.2005.05.002

    Article  Google Scholar 

  33. Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  34. Freyhof J, Erk’akan F, Özeren C, Perdices A (2011) An overview of the western Palaearctic loach genus Oxynoemacheilus (Teleostei: Nemacheilidae). Ichthyol Explor Fres 22:301–312

    Google Scholar 

  35. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Geraghty PT, Williamson JE, Macbeth WG, Wintner SP, Harry AV, Ovenden JR, Gillings MR (2013) Population expansion and genetic structure in Carcharhinus brevipinna in the southern Indo-Pacific. PLoS One 8:e75169. https://doi.org/10.1371/journal.pone.0075169

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Gholami Z, Esmaeili HR, Erpenbeck D, Reichenbacher B (2014) Phylogenetic analysis of Aphanius from the endorheic Kor River Basin in the Zagros Mountains, South-western Iran (Teleostei: Cyprinodontiformes: Cyprinodontidae). J Zoolog Syst Evol Res 52:130–141. https://doi.org/10.1111/jzs.12052

    Article  Google Scholar 

  38. Gonzalez EG, Pedraza-Lara C, Doadrio I (2014) Genetic diversity and population history of the endangered killifish Aphanius baeticus. J Hered 105:597–610. https://doi.org/10.1093/jhered/esu034

    CAS  Article  PubMed  Google Scholar 

  39. Grant WAS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426. https://doi.org/10.1093/jhered/89.5.415

    Article  Google Scholar 

  40. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  41. Hare MP (1998) Using mitochondrial DNA gene trees and nuclear RFLPs to predict genealogical patterns at nuclear loci: examples from the American oyster. In: Proceedings of the Trinational Workshop on Molecular Evolution. Duke Publishing Group, Durham, NC, pp 125–130

    Google Scholar 

  42. Heckel JJ (1847) Die Fische Persiens gesammelt von Theodor Kotschy. In: Russegger J (ed) Reisen in Europa, Asien und Afrika, mit besonderer Rücksicht auf die naturwissenschaftlichen Verhältnisse der betreffenden Länder, unternommen in den Jahren; unternommen in den Jahren 1835 bis 1841. E. Schweizerbart’sche Verlagshandlung, Stuttgart, pp 255–272

    Google Scholar 

  43. Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv Genet 11:615–626. https://doi.org/10.1007/s10592-009-9999-5

    Article  Google Scholar 

  44. Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. https://doi.org/10.1093/biomet/76.2.297

    Article  Google Scholar 

  45. Husemann M, Ray JW, King RS, Hooser EA, Danley PD (2012) Comparative biogeography reveals differences in population genetic structure of five species of stream fishes. Biol J Linn Soc 107:867–885. https://doi.org/10.1111/j.1095-8312.2012.01973.x

    Article  Google Scholar 

  46. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314. https://doi.org/10.1080/10618600.1996.10474713

    Article  Google Scholar 

  47. Khaefi R, Esmaeili HR, Ansari MH, Ebrahimi M (2018) Genetic diversification and population structure of Barbus cyri De Filippi, 1865 (Teleostei: Cyprinidae) in northern Iran inferred from the mitochondrial D-loop gene sequence. Environ Biol Fishes 101:181–192. https://doi.org/10.1007/s10641-017-0690-2

    Article  Google Scholar 

  48. Kingman JFC (1982) The coalescent. Stoch Proc Appl 13:235–248. https://doi.org/10.1016/0304-4149(82)90011-4

    Article  Google Scholar 

  49. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  PubMed  Google Scholar 

  50. Li WH (1997) Molecular evolution. Sinauer Associates Inc, Sunderland, Massachusetts

    Google Scholar 

  51. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051. https://doi.org/10.1111/j.1365-294X.2010.04688.x

    Article  PubMed  Google Scholar 

  53. Madsen T, Shine R, Olsson M, Wittzell H (1999) Conservation biology: restoration of an inbred adder population. Nature 402:34–35. https://doi.org/10.1038/46941

    CAS  Article  Google Scholar 

  54. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  55. Markert JA, Champlin DM, Gutjahr-Gobell R, Grear JS, Kuhn A, McGreevy TJ, Roth A, Bagley MJ, Nacci DE (2010) Population genetic diversity and fitness in multiple environments. BMC Evol Biol 10:205. https://doi.org/10.1186/1471-2148-10-205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Moritz C (1994a) Applications of mitochondrial DNA analysis in conservation: a critical review. Mol Ecol 3:401–411. https://doi.org/10.1111/j.1365-294X.1994.tb00080.x

    CAS  Article  Google Scholar 

  57. Moritz C (1994b) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375. https://doi.org/10.1016/0169-5347(94)90057-4

    CAS  Article  PubMed  Google Scholar 

  58. Moritz C (1995) Uses of molecular phylogenies for conservation. Philos Trans R Soc Lond B Biol Sci 349:113–118. https://doi.org/10.1098/rstb.1995.0097

    Article  Google Scholar 

  59. Moritz C, Dowling T, Brown W (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Evol Syst 18:269–292. https://doi.org/10.1146/annurev.es.18.110187.001413

    Article  Google Scholar 

  60. Nalbant TT, Bianco PG (1998) The loaches of Iran and adjacent regions with description of six new species (Cobitoidea). Ital J Zool 65:109–123. https://doi.org/10.1080/11250009809386803

    Article  Google Scholar 

  61. Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16. https://doi.org/10.1016/j.tree.2006.09.003

    Article  PubMed  Google Scholar 

  62. Parks DH, Mankowski T, Zangooei S, Porter MS, Armanini DG, Baird DJ, Langille MGI, Beiko RG (2013) GenGIS 2: geospatial analysis of traditional and genetic biodiversity, with new gradient algorithms and an extensible plugin framework. PLoS One 8:e69885. https://doi.org/10.1371/journal.pone.0069885

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45. https://doi.org/10.1016/S0169-5347(00)02026-7

    CAS  Article  PubMed  Google Scholar 

  64. Ralls K, Ballou JD, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193. https://doi.org/10.1111/j.1523-1739.1988.tb00169.x

    Article  Google Scholar 

  65. Rambaut A, Drummond AJ (2012) FigTree version 1.4.0. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/. Accessed 14 August 2019

  66. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034

    CAS  Article  PubMed  Google Scholar 

  67. Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86. https://doi.org/10.1093/molbev/msg009

    CAS  Article  PubMed  Google Scholar 

  68. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569. https://doi.org/10.1093/oxfordjournals.molbev.a040727

    CAS  Article  PubMed  Google Scholar 

  69. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494. https://doi.org/10.1038/33136

    CAS  Article  Google Scholar 

  71. Sayyadzadeh G (2019) Phylogeny of loach fishes (Teleostei: Cobitoidea) in Iran. Shiraz University, PhD. Dissertation

    Google Scholar 

  72. Sayyadzadeh G, Esmaeili HR, Eagderi S (2018) Re-description and molecular systematics of Paraschistura delvarii (Teleostei: Nemacheilidae). Biharean Biol 12:40–47

    Google Scholar 

  73. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  74. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Teimori A, Esmaeil HR, Gholamhosseini A (2011) The ichthyofauna of Kor and Helleh River basins in southwest of Iran with reference to taxonomic and zoogeographic features of native fishes. Iran J Anim Biosyst 6:1–8

    Google Scholar 

  77. Templeton AR (2008) Nested clade analysis: an extensively validated method for strong phylogeographic inference. Mol Ecol 17:1877–1880. https://doi.org/10.1111/j.1365-294X.2008.03731.x

    Article  PubMed  PubMed Central  Google Scholar 

  78. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115–e115. https://doi.org/10.1093/nar/gks596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Xian Liu J, Gao T, Yokogawa K, Zhang Y (2006) Differential population structure and demographic history of two closely related and species, Japanese seabass (Lateolabrax japonicas) in the northwestern Pacific. Mol Phylogenet Evol 39:799–811. https://doi.org/10.1016/j.ympev.2006.01.009

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Masoudi and S. Echreshavi for helping with fish collection and Dr. M. Ansari for helping with primer design. We also thank three anonymous reviewers for their helpful comments and technical advices, which greatly improved the manuscript. The research work was approved by Ethics Committee of Biology Department, Shiraz University (ECBD-SU-9233856).

Funding

We would like to thank the Fars Environment Department (grant number 97/500/7931) and Shiraz University for funding this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Esmaeili.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, H.R., Sayyadzadeh, G., Zarei, F. et al. Phylogeographic pattern and population structure of the Persian stone loach, Oxynoemacheilus persa (Heckel 1847) (family: Nemacheilidae) in southern Iran with implications for conservation. Environ Biol Fish 103, 77–88 (2020). https://doi.org/10.1007/s10641-019-00934-y

Download citation

Keywords

  • mtDNA
  • Endemic loach
  • Genetic structure
  • Genetic diversification
  • Historical demography