Skip to main content

Advertisement

Log in

Application of otolith morphometry for the study of ontogenetic variations of Odontesthes argentinensis

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The study of otolith morphometry is a tool widely used in numerous studies of fish populations (fish stocks, taxonomic, ecological, ontogeny, among others). The aim of this study was to detect ontogenetic variations in the otolith of Odontesthes argentinensis through the application of traditional and geometric morphometry and the association of these variations with ecological and trophic habits of the species. Fish (52 to 360 mm TL) were collected seasonally between years 2013–2016 in the southwest coast of the Atlantic Ocean (36°39’30.96”S - 56°40’40.09”W). Otolith shape indices (circularity, rectangularity, aspect ratio and surface occupied by sulcus) and Fourier descriptors were measured and compared through ontogenetic stages (I, II and III). The three stages analysed in the present study were differentiated by both traditional and geometric morphometry. The four analysed indices showed significant differences between stages (ANOVA Kruskal Wallis test, P < 0.001) and a simultaneous analysis of the morphometric variables also showed significant differences (Hotelling’s T2 < 0.001). The quadratic discriminant analysis performed on the Fourier descriptors showed a clear separation for each defined group. Therefore, the use of both methodologies simultaneously could be considered robust to evaluate the ontogenetic variations in this species. The observed changes could be associated to changes in the habitat throughout its development, to the sexual maturity of fish and to dietary shifting of these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agüera A, Brophy D (2011) Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fish Res 110:465–471. https://doi.org/10.1016/j.fishres.2011.06.003

    Article  Google Scholar 

  • Assis CAdS (2000) Estudo morfológico dos otólitos Sagittae, Asteriscus e lapillus de teleósteos (Actinopterygii, teleostei) de Portugal continental. Universidade de Lisboa, Doctoral Thesis

    Google Scholar 

  • Avigliano E, Martinez-Riaños F, Volpedo AV (2014) Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fish Res 149:55–60. https://doi.org/10.1016/j.fishres.2013.09.013

    Article  Google Scholar 

  • Avigliano E, Comte G, Rosso JJ, Mabragaña E, Della Rosa P, Sanchez S, Volpedo AV, del Rosso F, Schenone NF (2015a) Identification of fish stocks of river Crocker (Plagioscion ternetzi) in Paraná and Paraguay rivers by otolith morphometry. Lat Am J Aquat Res 43(4):718–725. https://doi.org/10.3856/vol43-issue4-full

    Article  Google Scholar 

  • Avigliano E, Jawad LA, Volpedo AV (2015b) Assessment of the morphometry of saccular otoliths as a tool to identify triplefin species (Tripterygiidae). J Mar Biol Assoc U.K 1-14 https://doi.org/10.1017/s0025315415001101

  • Avigliano E, Villatarco P, Volpedo AV (2015c) Otolith Sr:ca ratio and morphometry as indicators of habitat of a euryhaline species: the case of silverside Odontesthes bonariensis. Cienc Mar 41(3):189–202. https://doi.org/10.7773/cm.v41i3.2464

    Article  CAS  Google Scholar 

  • Avigliano E, Callicó Fortunato R, Biolé F, Domanico A, Simone SD, Neiff JJ, Volpedo AV (2016) Identification of nurseries areas of juvenile Prochilodus lineatus (Valenciennes, 1836) (Characiformes: Prochilodontidae) by scale and otolith morphometry and microchemistry. Neotrop Ichthyol 14(3):e160005. https://doi.org/10.1590/1982-0224-20160005

    Article  Google Scholar 

  • Avigliano E, Domanico A, Sánchez S, Volpedo AV (2017) Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fish Res 186:1–10. https://doi.org/10.1016/j.fishres.2016.07.026

    Article  Google Scholar 

  • Avigliano E, Rolón ME, Rosso JJ, Mabragaña E, Volpedo AV (2018) Using otolith morphometry for the identification of three sympatric and morphologically similar species of Astyanax from the Atlantic rain Forest (Argentina). Environ Biol Fish 101(9):1319–1328

    Article  Google Scholar 

  • Bemvenuti MDA (1990) Hábitos alimentares de peixes-rei (Atherinidae) na regi~ao estuarina da Lagoa dos Patos, Rio Grande do Sul, Brasil. Atlantica Rio Grande 12:79–102

    Google Scholar 

  • Bird JL, Eppler DT, Checkley DM Jr (1986) Comparisons of herring otoliths using Fourier series shape analysis. Can J Fish Aquat Sci 43:1228–1234

    Article  Google Scholar 

  • Burke N, Brophy D, King PA (2008) Otolith shape analysis: its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. ICES J Mar Sci 65(9):1670–1675

    Article  Google Scholar 

  • Callicó Fortunato R, Benedito Durà V, Volpedo A (2014) The morphology of saccular otoliths as a tool to identify different mugilid species from the northeastern Atlantic and Mediterranean Sea. Estuar Coast Shelf Sci 146:95–101. https://doi.org/10.1016/j.ecss.2014.05.013

    Article  Google Scholar 

  • Callicó Fortunato R, Benedito Durà V, González-Castro M, Volpedo A (2017) Morphological and morphometric changes of sagittae otoliths related to fish growth in three Mugilidae species. J Appl Ichthyol 33(6):1137–1145. https://doi.org/10.1111/jai.13479

    Article  Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms andapplications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Cañás L, Stransky C, Schlickeisen J, Sampedro MP, Fariña AC (2012) Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES J Mar Sci 69:250–256. https://doi.org/10.1093/icesjms/fss006

    Article  Google Scholar 

  • Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H (2004) Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can J Fish Aquat Sci 61:158–167

    Article  Google Scholar 

  • Chao LH, Pereira LE, Vieira JP (1985) Estuarine fish community of the Patos lagoon, Brazil. A baseline study. In: Yáñez-Arancibia A (ed) Fish Community Ecology in Estuaries and Coastal Lagoons: Towards and Ecosystem Integration, Vol. 20. UNAM, Mexico, pp 429–450

    Google Scholar 

  • Cresson P, Bouchoucha M, Morat F, Miralles F, Chavanon F (2015) A multitracer approach to assess the spatial contamination pattern of hake (Merluccius merluccius) in the French Mediterranean. Sci Total Environ 532:184–194

    Article  CAS  PubMed  Google Scholar 

  • De Buen F (1953) Los pejerreyes (Familia Atherinidae) en la fauna Uruguaya, con descripción de nuevas especies. B Inst Ocean São Paulo 4:3–80

    Article  Google Scholar 

  • de Carvalho BM, Martins Vaz-dos Santos A, Spach HL, Volpedo AV (2015) Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary. Sci Mar 79(4):409–418. https://doi.org/10.3989/scimar.04218.31A

    Article  Google Scholar 

  • De La Cruz-Agüero J, García-Rodríguez FJ, De La Cruz-Agüero G, Díaz-Murillo BP (2012) Identification of Gerreid species (Actinopterygii: Perciformes: Gerreidae) from the pacific coast of Mexico based on sagittal otolith morphology analysis. Acta Ichthyol Piscat 42(4):297–306. https://doi.org/10.3750/aip2012.42.4.03

    Article  Google Scholar 

  • Di Dario F, Dos Santos VM, De Souza Pereira MM (2013) Range extension of Odontesthes argentinensis (Valenciennes, 1835) (Teleostei: Atherinopsidae) in the southwestern Atlantic, with additional records in the Rio de Janeiro State, Brazil. Ichthyol 30:421–423. https://doi.org/10.1111/jai.12393

    Article  Google Scholar 

  • Duarte-Neto P, Lessa R, Stosic B, Morize E (2008) The use of sagittal otoliths in discriminating stocks of common dolphinfish (Coryphaena hippurus) off northeastern Brazil using multishape descriptors. ICES J Mar Sci 65:1144–1152. https://doi.org/10.1093/icesjms/fsn090

    Article  Google Scholar 

  • Dyer BS (2000) Revisión sistemática de los pejerreyes de Chile (Teleostei, Atheriniformes). Estud Oceanol 19:99–127

    Google Scholar 

  • Dyer BS (2006) Systematic revision of the south American silversides (Teleostei, Atheriniformes). Biocell 30:69–88

    PubMed  Google Scholar 

  • Ferguson GJ, Ward TM, Gillanders BM (2011) Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish Res 110:75–83. https://doi.org/10.1016/j.fishres.2011.03.014

    Article  Google Scholar 

  • Gagliano M, McCormick MI (2004) Feeding history influences otolith shape in tropical fish. Mar Ecol Prog Ser 278:291–296

    Article  Google Scholar 

  • Galley E, Wright PJ, Gibb FM (2006) Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic cod. ICES J Mar Sci 63:1710–1717. https://doi.org/10.1016/j.icesjms.2006.06.014

    Article  Google Scholar 

  • Gauldie RW (1988) Function, form and time-keeping properties of fish otoliths. Comp Biochem Physiol A Mol Integr Physiol 91:395–402

    Article  Google Scholar 

  • Gauldie RW, Crampton JS (2002) An eco-morphological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. J Fish Biol 60:1204–1221

    Article  Google Scholar 

  • Harbitz A, Albert OT (2015) Pitfalls in stock discrimination by shape analysis of otolith contours. ICES J Mar Sci doi 72:2090–2097. https://doi.org/10.1093/icesjms/fsv048

    Article  Google Scholar 

  • Hüssy K (2008) Otolith shape in juvenile cod (Gadus morhua): ontogenetic and environmental effects. J Exp Mar Biol Ecol 364(1):35–41

    Article  Google Scholar 

  • Iwata H, Ukai Y (2002) SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptical Fourier descriptors. J Hered 93:384–385

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo AM, Tombari AD, Benedito Durá V, Rodrigo Santamalia ME, Volpedo AV (2014) Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain). Thalassas 30(1):57–66 http://hdl.handle.net/10251/46138. Accessed 15 Feb 2019

    Google Scholar 

  • Jawad LA, Sabatino G, Ibanez AL, Andaloro F, Battaglia P (2017) Morphology and ontogenetic changes in otoliths of the mesopelagic fishes Ceratoscopelus maderensis (Myctophidae), Vinciguerria attenuata and V. poweriae (Phosichthyidae) from the strait of Messina (Mediterranean Sea). Acta Zool 00:1–17. https://doi.org/10.1111/azo.12197

    Article  Google Scholar 

  • Joh M, Matsuda T, Miyazono A (2015) Common otolith microstructure related to key early life-history events in flatfishes identified in the larvae and juveniles of cresthead flounder Pseudopleuronectes schrenki. J Fish Biol 86:448–462. https://doi.org/10.1111/jfb.12562

    Article  CAS  PubMed  Google Scholar 

  • Lleonart J, Salat J, Torres GJ (2000) Removing allometric effects of body size in morphological analysis. J Theor Biol 205:85–93. https://doi.org/10.1006/jtbi.2000.2043

    Article  CAS  PubMed  Google Scholar 

  • Llompart FM, Colautti DC, Baigún CRM (2012) Assessment of a major shore-based marine recreational fishery in the Southwest Atlantic, Argentina. New Zeal J Mar Fresh 46:57–70. https://doi.org/10.1080/00288330.2011.595420

    Article  Google Scholar 

  • Llompart FM, Colautti DC, Maiztegui T, Cruz-Jimenez AM, Baigún CRM (2013) Biological traits and growth patterns of Pejerrey Odontesthes argentinensis. J Fish Biol 82:458–474. https://doi.org/10.1111/j.1095-8649.2012.03494.x

    Article  CAS  PubMed  Google Scholar 

  • Llompart FM, Colautti DC, Baigún CRM (2017) Conciliating artisanal and recreational fisheries in Anegada Bay, Argentina. Fish Res 190:140–149. https://doi.org/10.1016/j.fishres.2017.01.011

    Article  Google Scholar 

  • Lombarte A, Castellón A (1991) Interespecific and intraspecific otolith variability in the genus Merluccius as determined by image analysis. Can J Zool 69:2442–2449

    Article  Google Scholar 

  • Lombarte A, Tuset V (2015) Morfometria de otolitos. Métodos de estudo com otólitos: principíos e aplicações. Buenos Aires: CAFP-BA-PIESCI, 269–302

  • Lombarte A, Torres GJ, Morales-Nin B (2003) Specific Merluccius otolith growth patterns related to phylogenetics and environmental factors. J Mar Biol Assoc U K 83(2):277–281

    Article  Google Scholar 

  • Lombarte A, Palmer M, Matallanas J, Gómez-Zurita J, Morales-Nin B (2010) Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environ Biol Fish 89:607–618. https://doi.org/10.1007/s10641-010-9673-2

    Article  Google Scholar 

  • Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S (2010) A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environ Biol Fish 89:591–605. https://doi.org/10.1007/s10641-010-9674-1

    Article  Google Scholar 

  • Martinetto P, Iribarne O, Palomo G (2005) Effect of fish predation on intertidal benthic fauna is modified by crab bioturbation. J Exp Mar Biol Ecol 318:71–84. https://doi.org/10.1016/j.jembe.2004.12.009

    Article  Google Scholar 

  • Mohan JA, Rulifson RA, Corbett DR, Halden NM (2012) Validation of Oligohaline elemental otolith signatures of striped bass by use of in situ caging experiments and water chemistry. Mar Coast Fish 4(1):57–70. https://doi.org/10.1080/19425120.2012.656533

    Article  Google Scholar 

  • Monteiro LR, Di Beneditto APM, Guillermo LH, Rivera LA (2005) Alometric changes and shape differentiation of sagitta otoliths in sciaenid. Fish Res 74:288–299

    Article  Google Scholar 

  • Morales-Nin BYO (1987) The influence of environmental factors on microstructure of otoliths of three demersal fish species caught off Namibia. In: Payne, A.I.L., Gulland, J.A., Brink, K.H. (Eds.), The Benguela and Comparable Ecosystems. S Afr J Mar Sci 5:255–262

    Article  Google Scholar 

  • Orlov AM, Afanasyev PK (2013) Otolith morphometrics as a tool for analysis of the population structure of Pacific cod Gadus macrocephalus (Gadidae, Teleostei) Amur Zool Zh 3:327-331

  • Petursdottir G, Begg GA, Marteinsdottir G (2006) Discrimination between Icelandic cod (Gadus morhua L.) populations from adjacent spawning areas based on otolith growth and shape fish res 80:182-189. https://doi.org/10.1016/j.fishres.2006.05.002

  • Piera J, Parisi-Baradad V, García-Ladona E, Lombarte A, Recasens L, Cabestany J (2005) Otolith shape feature extraction oriented to automatic classification with open distributed data. Mar Freshw Res 56(5):805–814

    Article  Google Scholar 

  • Ponton D (2006) Is geometric morphometrics efficient for comparing otolith shape of different fish species? J Morphol 267(6):750–757. https://doi.org/10.1002/jmor.10439

    Article  PubMed  Google Scholar 

  • Popper AN, Ramcharitar J, Campana SE (2005) Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Freshw Res 56(5):497–504

    Article  Google Scholar 

  • Radtke RL, Shafer DJ (1992) Environmental sensitivity of fish otolith microchemistry. Aust J Mar Freshw Res 43:935–951

    Article  CAS  Google Scholar 

  • Rohlf JF, Marcus LF (1993) A revolution morphometrics. Trends Ecol Evol 8(4):129–132

    Article  Google Scholar 

  • Sadighzadeh Z, Otero-Ferrer JL, Lombarte A, Fatemi MR, Tuset VM (2014) An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology. Sci Mar 78:353–362

    Article  Google Scholar 

  • Sampaio LA (2006) Production of “pejerrey” Odontesthes argentinensis fingerlings: a review of current techniques. Biocell 30(1):121–123

    PubMed  Google Scholar 

  • Silva Rodríguez MP, Favero M, Berón MP, Mariano-Jelicich R, Mauco L (2005) Ecology and conservation of seabirds using the coasts of Buenos Aires Province as a wintering area. El hornero 20(1):111–130

    Google Scholar 

  • Steer MA, Fowler AJ (2014) Spatial variation in shape of otoliths for southern garfish Hyporhamphus melanochir–contribution to stock structure. Mar Biol Res 11:23–33. https://doi.org/10.1080/17451000.2014.952313

    Article  Google Scholar 

  • Thompson GA, Volpedo AV (2018) Diet composition and feeding strategy of the New World silverside Odontesthes argentinensis in a temperate coastal area (South America). Mar Coast Fish 10:80–88

    Article  Google Scholar 

  • Tombari A, Volpedo AV, Echeverría DD (2005) Desarrollo de la sagitta en juveniles y adultos de Odontesthes argentiniensis (Valenciennes, 1835) y O. bonariensis (Valenciennes, 1835) de la provincia de Buenos Aires, Argentina (Teleostei: Atheriniformes). Rev Chil Hist Nat 78:623–633

    Article  Google Scholar 

  • Tombari A, Gosztonyi A, Echeverría DD, Volpedo AV (2010) Otolith and vertebral morphology of marine atherinid species (Atheriniformes, Atherinopsidae) coexisting in the southwestern Atlantic Ocean. Cienc Mar 36(3):213–223

    Article  Google Scholar 

  • Tracey SR, Lyle JM, Duhamel G (2006) Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish Res 77:138–147

    Article  Google Scholar 

  • Turan C (2000) Otolith shape and meristic analysis of herring (Clupea harengus) in the north-East Atlantic. Arch Fish Mar Res 48(3):213–225

    Article  Google Scholar 

  • Tuset VM, Lombarte A, González JA, Pertusa JF, Lorente M (2003a) Comparative morphology of the sagittal otolith in Serranus spp. J Fish Biol 63(6):1491–1504

    Article  Google Scholar 

  • Tuset VM, Lozano IJ, González JA, Pertusa JF, García-Díaz MM (2003b) Shape indices to identify regional differences in otolith morphology of scomber, Serranus cabrilla (L., 1758). J Appl Ichthyol 19(2):88–93. https://doi.org/10.1046/j.1439-0426.2003.00344.x

    Article  Google Scholar 

  • Tuset VM, Imondi R, Aguado G, Otero-Ferrer JL, Santschi L, Lombarte A, Love M (2015) Otolith patterns of rockfishes from the northeastern Pacific. J Morphol 276(4):458–469

    Article  PubMed  Google Scholar 

  • Valentin AE, Peninc X, Chanutb JP, Powerd D, Sévignya JM (2014) Combining microsatellites and geometric morphometrics for the study of redfish (Sebastes spp.) population structure in the Northwest Atlantic. Fish Res 154:102–119

    Article  Google Scholar 

  • Vasconcelos J, Vieira AR, SequeiraV GJA, Kaufmann M, Gordo LS (2018) Identifying populations of the blue jack mackerel (Trachurus picturatus) in the Northeast Atlantic by using geometric morphometrics and otolith shape analysis. Fish Bull 116:81–92

    Article  Google Scholar 

  • Vignon M (2012) Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment. J Exp Mar Biol Ecol 420:26–32

    Article  Google Scholar 

  • Vignon M, Morat F (2010) Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar Ecol Prog Ser 411:231–241

    Article  Google Scholar 

  • Volpedo AV, Echeverría DD (1999) Morfología de los otolitos sagittae de juveniles y adultos de Micropogonias furnieri (Desmarest, 1823) (Sciaenidae). Revista de Ciencias Mar Thalassas 15:19–24

    Google Scholar 

  • Volpedo AV, Echeverría DD (2003) Ecomorphological patterns of the sagitta in fish on the continental shelf off argentine. Fish Res 60(2):551–560

    Article  Google Scholar 

  • Volpedo AV, Vaz dos Santos AM (2015) Métodos de estudios con otolitos: principios y aplicaciones/ Métodos de estudos com otólitos: princípios e aplicações –1era ed. edición bilingue. Ciudad Autónoma de Buenos Aires ISBN 978-987-33-8884-2

  • Volpedo AV, Tombari AD, Echeverría DD (2008) Eco-morphological patterns of the sagitta of Antarctic fish. Polar Biol 31:635–640. https://doi.org/10.1007/s00300-007-0400-1

    Article  Google Scholar 

  • Waessle JA, Lasta CA, Favero M (2003) Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35-36°S). Sci Mar 67(2):233–240

    Article  Google Scholar 

  • Wilson RR Jr (1985) Depth-related changes in sagitta morphology in six Macrourid fishes of the Pacific and Atlantic oceans. Copeia 1985:1011–1017

    Article  Google Scholar 

  • Wu Q, Merchant F, Castleman K (2008). Microscope image processing. Elsevier. 548 pp.

Download references

Acknowledgements

Authors are indebted to CONICET (PIP 112-20120100543CO), ANPCyT (PICT 2015-1823), Universidad de Buenos Aires (UBACYT 20020150100052BA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Gabriela Biolé.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biolé, F.G., Callicó Fortunato, R., Thompson, G.A. et al. Application of otolith morphometry for the study of ontogenetic variations of Odontesthes argentinensis. Environ Biol Fish 102, 1301–1310 (2019). https://doi.org/10.1007/s10641-019-00908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-019-00908-0

Keywords

Navigation