Skip to main content
Log in

Fatty acid composition in the white muscle of Cottoidei fishes of Lake Baikal reflects their habitat depth

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Lake Baikal is a unique freshwater environment with maximum depths over 1600 m. The high water pressure at the lakebed strengthens the solidifying effect of low water temperature on animal tissue lipids, and thus the effective temperatures in the depths of the lake equal subzero temperatures in shallow waters. Cottoidei species has colonized the different water layers of the lake, and developed different ecology and physiology reflected in their tissue biochemistry. We studied by gas chromatography the composition of fatty acids (FAs), largely responsible for tissue lipid physical properties, in the white muscle tissue of 13 species of the Cottoidei fish; five benthic abyssal, six benthic eurybathic and two benthopelagic species. The FA profiles reflected habitat depth. The muscles of the deepest living species contained little polyunsaturated FAs (PUFAs) and were instead rich in monounsaturated FAs (MUFAs), which may be due to occasional weak food web links to the PUFA-rich primary producers of the photic water layer, high MUFA supply from their benthic diet, and conversion of saturated FAs (SFAs) to MUFAs in the tissues of the fish. Despite the MUFA percentage among the abyssal species reached even 50% (by weight) of total FAs, the PUFA percentage still remained above 20% in every species. The muscle MUFA/SFA ratio correlated negatively with the PUFA content of the fish muscle, suggesting viscosity control integrating the fluidity contributions from the dietary PUFAs and potentially endogenous MUFAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abouel-Yazeed AM (2013) FAs profile of some marine water and freshwater fish. J Arabian Aquacult Soc 8:283–292

    Google Scholar 

  • Ackman RG (1967) Characteristics of the fatty acid composition and biochemistry of some freshwater fish oils and lipids in comparison with marine oils and lipids. Comp Biochem Physiol 22:907–922

    Article  CAS  Google Scholar 

  • Ackman RG (1992) Application of gas-liquid chromatography to lipid separation and analysis: qualitative and quantitative analysis. In: Chow CK (ed) Fatty acids in foods and their health implications. Marcel Dekker, New York, pp 47–63

    Google Scholar 

  • Ahlgren G, Blomqvist P, Boberg M, Gustafsson IB (1994) Fatty acid content of the dorsal muscle – an indicator of fat quality in freshwater fish. J Fish Biol 45:131–157

    CAS  Google Scholar 

  • Ahlgren G, Vrede T, Goedkoop W (2009) Fatty acid ratios in freshwater fish, zooplankton and zoobenthos – are there specific optima? In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in aquatic ecosystems. Springer, New York, pp 147–178

    Chapter  Google Scholar 

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Averina E, Grahl-Nielsen O, Bazarsadueva S, Radnaeva L (2011) Transformation through the food chain of lake Baikal hydrobionts fatty acids. Chem Nat Compd 46:857–861

    Article  CAS  Google Scholar 

  • Bakes MJ, Elliott NG, Greens GJ, Nichols PD (1995) Variation in lipid composition of some deep-sea fish (Teleostei: Oreosomatidae and Trachichthyidae). Comp Biochem Physiol B 111:633–642

    Article  Google Scholar 

  • Bazarsadueva SV, Radnaeva LD (2013) Fatty acid composition of deep water Baikal amphipods Ommatogammarus albinus. Chem Sustain Dev 21:533–537

    CAS  Google Scholar 

  • Berg LS (1922) Fauna of Lake Baikal and its origin. Klimat i Zhizn, Moscow, pp 28–53

    Google Scholar 

  • Brett M, Müller-Navarra D (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw Biol 38:483–499

    Article  CAS  Google Scholar 

  • Bühring SI, Christiansen B (2001) Lipids in selected abyssal benthopelagic animals: links to the epipelagic zone? Prog Oceanogr 50:369–382

    Article  Google Scholar 

  • Castro LFC, Wilson JM, Gonçalves O, Galante-Oliveira S, Rocha E, Cunha I (2011) The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol Biol 11:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Vander Zanden MJ, Heyvaert AC, Richards BC, Allen BC, Goldman CR (2005) The effects of cultural eutrophication on the coupling between pelagic primary production and benthic consumers. Limnol Oceanogr 50:1368–1376

    Article  CAS  Google Scholar 

  • Cossins AR, Macdonald AG (1989) The adaptation of biological membranes to temperature and pressure: fish from the deep and cold. J Bioenerg Biomembr 21:115–135

    Article  CAS  PubMed  Google Scholar 

  • Dembitsky VM, Kashin AG, Rezanka T (1994a) Comparative study of the endemic freshwater fauna of Lake Baikal V. Phospholipid and fatty acid composition of the deep-water amphipod crustacean Acanthogammarus (Brachyuropus) grewingkii. Comp Biochem Physiol 108B:443–448

    CAS  Google Scholar 

  • Dembitsky VM, Rezanka T, Kashin AG (1994b) Comparative study of the endemic freshwater fauna of Lake Baikal IV. Phospholipid and fatty acid compositions of two gastropod molluscs of the genus Valvata. Comp Biochem Physiol 107B:325–330

    CAS  Google Scholar 

  • Dembitsky VM, Rezanka T, Kashin AG (1994c) Comparative study of the endemic freshwater fauna of Lake Baikal. VI. Unusual fatty acid and lipid composition of the endemic sponge Lubomirskia baikalensis and its amphipod crustacean parasite Brandtia (Spinacanthus) parasitica. Comp Biochem Physiol 109B:415–426

    CAS  Google Scholar 

  • Dorogostaisky VC (1923) To the taxonomy of Baikal basin’ graylings. Proceedings of Irkutsk society of scientists, anthropologists and ethnographers, Irkutsk, pp 1–75

    Google Scholar 

  • Drazen JC, Phleger CF, Guest MA, Nichols PD (2009) Lipid composition and diet inferences in abyssal macrourids of the eastern North Pacific. Mar Ecol Prog Ser 387:1–14

    Article  CAS  Google Scholar 

  • Grahl-Nielsen O, Averina E, Pronin N, Radnaeva L, Käkelä R (2011) Fatty acid profiles in different fish species in Lake Baikal. Aquat Biol 13:1–10

    Article  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Article  CAS  PubMed  Google Scholar 

  • Henderson RJ, Sargent JR, Hopkins CCE (1984) Changes in the content and fatty acid composition of lipid in an isolated population of the capelin Mallotus villosus during sexual maturation and spawning. Mar Biol 78:255–263

    Article  CAS  Google Scholar 

  • Hsieh S-L, Hu C-Y, Hsu Y-T, Hsieh T-J (2007) Influence of dietary lipids on the fatty acid composition and stearoyl-CoA desaturase expression in hybrid tilapia (Oreochromis niloticus × O. aureus) under cold shock. Comp Biochem Physiol B 147:438–444

    Article  PubMed  Google Scholar 

  • Ju SJ, Kucklick JR, Kozlova T, Harvey HR (1997) Lipid accumulation and fatty acid composition during maturation of three pelagic fish species in Lake Baikal. J Gt Lakes Res 23:241–253

    Article  CAS  Google Scholar 

  • Käkelä R, Käkelä A, Kahle S, Becker PH, Kelly A, Furness R (2005) Fatty acid signatures in plasma of captive herring gulls as indicators of demersal or pelagic fish diet. Mar Ecol Prog Ser 293:191–200

    Article  Google Scholar 

  • Käkelä R, Mattila M, Hermansson M, Haimi P, Uphoff A, Paajanen V, Somerharju P, Vornanen M (2008) Seasonal acclimatization of brain lipidome in a eurythermal fish (Carassius carassius) is mainly determined by temperature. Am J Phys Regul Integr Comp Phys 294:R1716–R1728

    Google Scholar 

  • Kato M, Hayashi R (1999) Effects of high pressure on lipids and biomembranes for understanding high-pressure-induced biological phenomena. Biosci Biotechnol Biochem 63:1321–1328

    Article  CAS  PubMed  Google Scholar 

  • Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446:1–22

    Article  CAS  Google Scholar 

  • Knothe G, Dunn RO (2009) A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J Am Oil Chem Soc 86:843–856

    Article  CAS  Google Scholar 

  • Kontula T, Kirilchik S, Väinolä R (2003) Endemic diversification of the monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing. Mol Phylogenet Evol 27:143–155

    Article  CAS  PubMed  Google Scholar 

  • Kozlova TA, Khotimchenko SV (1993) Fatty acid composition of endemic Baikal fish and crustacea. Comp Biochem Physiol B 105:97–103

    Article  Google Scholar 

  • Kozlova TA, Khotimchenko SV (2000) Lipids and fatty acids of two pelagic cottoid fishes (Comephorus sp.) endemic to Lake Baikal. Comp Biochem Physiol B 126:477–485

    Article  CAS  PubMed  Google Scholar 

  • Lea M-A, Nichols PD, Wilson G (2002) Fatty acid composition of lipid-rich myctophids and mackerel icefish (Champsocephalus gunnari) – Southern Ocean food-web implications. Polar Biol 25:843–854

    Google Scholar 

  • Macdonald AG (1984) The effect of pressure on the molecular structure and physiological functions of cell membranes. Philos Trans R Soc London Ser B 304:47–68

    Article  CAS  Google Scholar 

  • Meier S, Mjøs SA, Joensen H, Grahl-Nielsen O (2006) Validation of a one-step extraction/methylation method for determination of fatty acids and cholesterol in marine tissues. J Chromatogr A 1104:291–298

    Article  CAS  PubMed  Google Scholar 

  • Moore MV, Hampton SE, Izmest'eva LR, Silow EA, Peshkova EV, Pavlov BK (2009) Climate change and the world's “sacred sea” – Lake Baikal, Siberia. Bioscience 59:405–417

    Article  Google Scholar 

  • Morris RJ (1984) The endemic faunae of Lake Baikal: their general biochemistry and detailed lipid composition. Proc R Soc Lond B 222:51–78

    Article  CAS  PubMed  Google Scholar 

  • Nair PGV, Gopakumar K (1978) Fatty acid compositions of 15 species of fish from tropical waters. J Food Sci 43:1162–1164

    Article  CAS  Google Scholar 

  • Ntambi JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40:1549–1558

    CAS  PubMed  Google Scholar 

  • Økland HMW, Stoknes IS, Remme JF, Kjerstad M, Synnes M (2005) Proximate composition, fatty acid and lipid class composition of the muscle from deep-sea teleosts and elasmobranchs. Comp Biochem Physiol B 140:437–443

    Article  PubMed  Google Scholar 

  • Pethybridge H, Daley R, Virtue P, Nichols P (2010) Lipid composition and partitioning of deepwater chondrichthyans: inferences of feeding ecology and distribution. Mar Biol 157:1367–1384

    Article  CAS  Google Scholar 

  • Sebert P (2002) Fish at high pressure: a hundred year history. Comp Biochem Physiol A 131:575–585

    Article  Google Scholar 

  • Semovski SV, Mogilev NY, Sherstyankin PP (2000) Lake Baikal ice: analysis of AVHRR imagery and simulation of under-ice phytoplankton bloom. J Mar Syst 27:117–130

    Article  Google Scholar 

  • Shishlyannikov SM, Klimenkov IV, Bedoshvili YD, Mikhailov IS, Gorshkov AG (2014) Effect of mixotrophic growth on the ultrastructure and fatty acid composition of the diatom Synedra acus from Lake Baikal. J Biol Res (Thessalon) 21:15

    Article  Google Scholar 

  • Sideleva VG (1982) Seismosensoric system and ecology of Baikal slimy sculpins. Nauka, Novosibirsk, pp 1–147 [In Russian]

    Google Scholar 

  • Sideleva VG (1993) The endemic fish fauna of Lake Baikal, its origin and the conditions of existence. St. Petersburg State University, St. Petersburg, pp 1–40

    Google Scholar 

  • Sideleva VG (2001) List of fishes from Lake Baikal with descriptions of new taxa of cottoid fishes. In: Pugachev ON, Balushkin AV (eds) New contributions to freshwater fish research, vol vol. 287. Proceedings of the zoological institute, St. Petersburg: Zoological Institute RAS, pp 45–79

    Google Scholar 

  • Sideleva VG, Fialkov VA (2015) Cottoid fishes (Cottoidei) in deep-water hydrothermal vent community in Frolikha Bay, Lake Baikal (in Russian). Trudy VNIRO 156:132–145

    Google Scholar 

  • Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577

    Article  CAS  PubMed  Google Scholar 

  • Steffens W, Wirth M (2005) Freshwater fish – an important source of n-3 polyunsaturated fatty acids: review. Arch Pol Fish 13:5–16

    Google Scholar 

  • Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1–27

    Article  CAS  PubMed  Google Scholar 

  • Taliev DN (1955) Slimy sculpins of Lake Baikal (in Russian). Publ. of Academy of Sciences of USSR, Moscow, pp 1–603

    Google Scholar 

  • Tanakol R, Yazici Z, Sener E, Sencer E (1999) Fatty acid composition of 19 species of fish from the Black Sea and the Marmara Sea. Lipids 34:291–297

    Article  CAS  PubMed  Google Scholar 

  • Trueman RJ, Tiku PE, Caddick MX, Cossins AR (2000) Thermal thresholds of lipid restructuring and ∆9-desaturase expression in the liver of carp (Cyprinus carpio l.) J Exp Biol 203:641–650

    CAS  PubMed  Google Scholar 

  • Werbrouck E, Van Gansbeke D, Vanreusel A, De Troch M (2016) Temperature affects the use of storage fatty acids as energy source in a benthic copepod (Platychelipus littoralis, Harpacticoida). PLoS One 11:e0151779

    Article  PubMed  PubMed Central  Google Scholar 

  • Wold S, Sjöström M (1977) SIMCA: a method for analyzing chemical data in terms of similarity and analogy. In: Kowalski B (ed) Chemometrics: theory and application. American Chemical Society, Washington, DC, pp 243–282

    Chapter  Google Scholar 

  • Zink K-G, Mangelsdorf K, Granina L, Horsfield B (2008) Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids. Anal Bioanal Chem 390:885–896

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Lake Baikal Protection Fund is gratefully acknowledged for organizing the international research expedition “Mirs on Lake Baikal” during 2008-2010. This study was supported by the Program of the Russian Academy of Sciences’ Presidium (V.46.5.2; 2013-2016) and was funded by Russian Fundamental Research Fund (14-05-00516 А; 2014-2016). Assistance of Melissa Westberg in the statistical analyses is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa D. Radnaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radnaeva, L.D., Popov, D.V., Grahl-Nielsen, O. et al. Fatty acid composition in the white muscle of Cottoidei fishes of Lake Baikal reflects their habitat depth. Environ Biol Fish 100, 1623–1641 (2017). https://doi.org/10.1007/s10641-017-0670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-017-0670-6

Keywords

Navigation