Skip to main content
Log in

Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In an earlier study of deep subsurface sediments from Nankai Trough (ODP Leg 190, offshore Japan) we employed intact phospholipids (PLs) as molecular indicators of living microorganisms. The current study extends this work by quantifying absolute amounts of sedimentary PLs by liquid chromatography-mass spectrometry (LC-MS) and by converting PL data into cell numbers in order to improve methods to estimate the extent of bacterial life in the subsurface. Investigations were carried out on 90 cm short cores of Lake Baikal sediment. High amounts of identified intact PLs are interpreted as reflecting the constituents of living bacteria due to high organic matter decomposition and oxic mineralisation between the epilimnion and the sediment-water interface. Concentrations of ester-bound PLs reach up to 13,120 ng/g sediment dry weight. Predominance of ethanolamine and glycerol PL head groups confirms the bacterial origin. The most abundant side-chain pairs are combinations including 14:0 and 16:0 fatty acids and to a minor extent 15:0 and 16:1 fatty acids. Depth profiles of PL concentrations converted from conventional PL fatty acid analysis are of the same order of magnitude and show comparable trends as those for intact PLs. An approximate estimation of bacterial cell numbers is inferred from intact PL quantification using LC-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parkes RJ, Cragg BA, Wellsbury P (2000) Hydrogeol J 8:11–28

    Article  Google Scholar 

  2. Colwell F, Matsumoto R, Reed D (2004) Chem Geol 205:391–404

    Article  CAS  Google Scholar 

  3. Parkes RJ et al (2005) Nature 436:390–394

    Article  CAS  Google Scholar 

  4. Cragg BA, Harvey SM, Fry JC, Herbert RA, Parkes RJ (1992) Proc Ocean Drilling Program Sci Results 127/128(1):761–776

    Google Scholar 

  5. Haglund A-L, Lantz P, Törnblom E, Tranvik L (2003) FEMS Microbiol Ecol 46:31–38

    Article  CAS  Google Scholar 

  6. Wellsbury P, Goodman K, Cragg BA, Parkes JR (2000) Proc Ocean Drilling Program Sci Results 164:379–391

    Google Scholar 

  7. Frostegård Å, Tunlid A, Bååth E (1991) J Microbiol Methods 14:151–163

    Article  Google Scholar 

  8. White DC, Davies WM, Nickels JS, King JD, Bobbie RJ (1979) Oecologia 40:51–62

    Article  Google Scholar 

  9. Amman RI, Ludwig W, Schleifer K-H (1995) Microbiol Rev 59:143–169

    Google Scholar 

  10. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Nature 433:861–864

    Article  CAS  Google Scholar 

  11. Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) J Microbiol Methods 55:155–164

    Article  CAS  Google Scholar 

  12. Koizumi Y, Takii S, Nishino M, Nakajima T (2003) FEMS Microbiol Ecol 44:101–108

    Article  CAS  Google Scholar 

  13. Zlatkin IV, Schneider M, de Bruijn FJ, Forney LJ (1996) J Ind Microbiol 17:219–227

    Article  CAS  Google Scholar 

  14. Baird BH, Nivens DE, Parker JH, White DC (1985) Deep Sea Res 32:1089–1099

    Article  Google Scholar 

  15. Smith GA, Nickels JS, Kerger BD, Davis JD, Collins SP (1986) Can J Microbiol 32:104–111

    CAS  Google Scholar 

  16. Rajendran N, Matsuda O, Imamura N, Urushigawa Y (1992) Appl Environ Microbiol 58:562–571

    CAS  Google Scholar 

  17. Balkwill DL, Leach FR, Wilson JT, McNabb JF, White DC (1988) Microb Ecol 16:73–84

    Article  CAS  Google Scholar 

  18. Mancuso CA, Franzmann PD, Burton HR, Nichols PD (1990) Microb Ecol 19:73–95

    Article  CAS  Google Scholar 

  19. Mills CT, Dias RF, Graham D, Mandernack KW (2006) Mar Chem 98:197–209

    Article  CAS  Google Scholar 

  20. Parkes RJ, Taylor J (1983) Estuarine Coastal Shelf Sci 16:173–189

    Article  CAS  Google Scholar 

  21. Aries E, Doumenq P, Artaud J, Acquaviva M, Bertrand JC (2001) Org Geochem 32:891–903

    Article  CAS  Google Scholar 

  22. Mazzella N, Molinet J, Syakti AD, Bertrand J-C, Doumenq P (2007) Mar Chem 103:304–317

    Article  CAS  Google Scholar 

  23. Rütters H, Sass H, Cypionka H, Rullkötter J (2002) Org Geochem 33:803–816

    Article  Google Scholar 

  24. Zink K-G, Mangelsdorf K (2004) Anal Bioanal Chem 380:798–812

    Article  CAS  Google Scholar 

  25. Mukamolova GV, Yanopolskaya ND, Votyakova TV, Popov VI, Kaprelyants AS, Kell DB (1995) Archiv Microbiol 163:373–379

    Article  CAS  Google Scholar 

  26. Harwood JL, Russell NJ (1984) Lipids in plants and microbes. Allen and Unwin, London

    Google Scholar 

  27. Rock CO, Jackowski S, Cronan JE Jr (1996) In Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam, pp 35–74

    Google Scholar 

  28. De Rosa M, Gambacorta A, Gliozzi A (1986) Microbiol Rev 50:70–80

    Google Scholar 

  29. Sprott GD, Agnew BJ, Patel GB (1997) Can J Microbiol 43:467–476

    Article  CAS  Google Scholar 

  30. Biddle JF et al (2006) Proc Natl Acad Sci 103:3846–3851

    Article  CAS  Google Scholar 

  31. Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2004) Rapid Commun Mass Spectrom 18:617–628

    Article  CAS  Google Scholar 

  32. Kuzmin MI, Karabanov EB, Prokopenko AA, Gelety VF, Antipin VS, Williams DF, Gvozdkov AN (2000) Int J Earth Sci 89:183–192

    Article  Google Scholar 

  33. Oberhänsli H, Mackay AW (2005) Glob Planet Change 46:1–7

    Article  Google Scholar 

  34. Williams DF, Peck J, Karabanov EB, Prokopenko AA, Kravchinsky V, King J, Kuzmin MI (1997) Science 278:1114–1117

    Article  CAS  Google Scholar 

  35. Andreeva IS et al (2001) Russ Geol Geophys 42:208–218

    Google Scholar 

  36. Bel’kova NL, Parfenova VV, Kostornova TY, Denisova LY, Zaichikov EF (2003) Microbiology 72:203–212

    Article  CAS  Google Scholar 

  37. Russell M, Rosell-Melé A (2005) Glob Planet Change 46:45–56

    Article  Google Scholar 

  38. Martin P, Granina L, Martens K, Goddeeris B (1998) Hydrobiologia 367:163–174

    Article  CAS  Google Scholar 

  39. Zink K-G, Wilkes H, Disko U, Elvert M, Horsfield B (2003) Org Geochem 34:755–769

    Article  CAS  Google Scholar 

  40. Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  41. Mangelsdorf K, Zink K-G, Birrien J-L, Toffin L (2005) Org Geochem 36:1459–1479

    Article  CAS  Google Scholar 

  42. Baird BH, White DC (1985) Mar Geol 68:217–231

    Article  CAS  Google Scholar 

  43. Guezennec J, Fiala-Medioni A (1996) FEMS Microbiol Ecol 19:83–93

    Article  CAS  Google Scholar 

  44. Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice Hall, London

    Google Scholar 

  45. Wilkinson SG (1988) In Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic, London, pp 299–488

    Google Scholar 

  46. Repin VE et al (2001) Russ Geol Geophys 42:222–227

    Google Scholar 

  47. Ivanova EP, Zhukova NV, Svetashev VI, Gorshkova NM, Kurilenko VV, Frolova GM, Mikhailov VV (2000) Curr Microbiol 41:341–345

    Article  CAS  Google Scholar 

  48. Mazzella N, Molinet J, Syakti AD, Barriol A, Dodi A, Bertrand J-C, Doumenq P (2005) J Chromatogr B 822:40–53

    Article  CAS  Google Scholar 

  49. Niepel T, Meyer H, Wray V, Abraham W-R (1998) J Bacteriol 180:4650–4657

    CAS  Google Scholar 

  50. Woods BJB (1988) In Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic, London, pp 807–867

    Google Scholar 

  51. Lopez-Lara IM, Geiger O (2001) J Biotechnol 91:211

    Article  CAS  Google Scholar 

  52. Perry GJ, Volkman JK, Johns RB, Bavor HJ (1979) Geochim Cosmochim Acta 43:1715–1725

    Article  CAS  Google Scholar 

  53. Fietz S, Sturm M, Nicklisch A (2005) Glob Planet Change 46:29–44

    Article  Google Scholar 

  54. Martin P, Boes X, Goddeeris B, Fagel N (2005) Glob Planet Change 46:87–99

    Article  Google Scholar 

  55. Miskin I, Rhodes G, Lawlor K, Saunders JR, Pickup RW (1998) Microbiology 144:2427–2439

    Article  CAS  Google Scholar 

  56. Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Geomicrobiol J 20:403–419

    Article  CAS  Google Scholar 

  57. Fredrickson HL, Cappenberg TE, de Leeuw JW (1986) FEMS Microbiol Ecol 38:381–396

    Article  CAS  Google Scholar 

  58. Krumholz L, McKinley JP, Ulrich GA, Suflita JM (1997) Nature 386:64–66

    Article  CAS  Google Scholar 

  59. Lehmann WD (1996) Massenspektrometrie in der Biochemie. Spektrum, Heidelberg

    Google Scholar 

  60. Hsu F-F, Turk J (2003) Am Soc Mass Spectrom 14:352–363

    Article  CAS  Google Scholar 

  61. Tunlid A, Ringelberg D, Phelps TJ, Low C, White DC (1989) J Microbiol Methods 10:139–153

    Article  CAS  Google Scholar 

  62. Summit M, Peacock A, Ringelberg D, White DC, Baross JA (2000) Proc Ocean Drilling Program Sci Results 169:1–19

    Google Scholar 

  63. Fredrickson JK et al (1995) Mol Ecol 4:619–626

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the EU-Program CONTINENT group, especially H. Oberhänsli for enabling sampling at Lake Baikal. S. Bernau, D. Radny and C. Karger are thanked for laboratory assistance. We thank L. Schwark for providing elemental analyses. T.Y. Kostornova is thanked for counting living cells. We appreciate constructive comments on the manuscript by K.-U. Hinrichs and E.A. Canuel. The study benefited from discussions with M. Leybourne. We acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financially supporting this study within project ZI 731/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-G. Zink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zink, KG., Mangelsdorf, K., Granina, L. et al. Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids. Anal Bioanal Chem 390, 885–896 (2008). https://doi.org/10.1007/s00216-007-1732-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1732-y

Keywords

Navigation