Skip to main content

Advertisement

Log in

Shared or distinct responses between intermediate and satellite stream fish species in an altered Amazonian River?

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Environmental and spatial variables can distinctly influence the occupancy frequency distributions in stream fish. From a metacommunity context, we tested the following hypothesis, intermediate species are governed by dispersal and niche-based processes; in contrast, satellite species are governed by niche-based processes. To test this, we separately analyzed three data sets, the entire metacommunity, the intermediate species and the satellite species, using a forward selection of explanatory variables, and a partial Redundancy Distance Analysis. The fish and 31 variables of 52 stream reaches of a Brazilian river basin in the Western Amazon were collected during the dry period of 2012. The results for all of the data set revealed two different patterns: on one side, satellite species revealed that niche and dispersal-based processes were the most important; on the other side, for intermediate species and for all of the species set, only dispersal-based processes were the most important. For the data set including all of the species and the intermediate species, the variance was explained mainly by landscape scale variables. By contrast, the variance within the satellite species set was explained by local scale variables. Management efforts for intermediate species should be taking at larger scale, but they are usually less critical for the maintenance of aquatic biodiversity; on the other hand, management efforts for satellite species should be taken at smaller scale and based on specific biological and ecological information for the focal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agência Nacional de Águas ANA (2017) HidroWeb Sistema de informações hidrológicas, Brasília http://hidroweb.ana.gov.br. Accessed June 2017

  • Algarte VM, Rodrigues L, Landeiro VL, Siqueira T, Bini LM (2014) Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722:279–290. doi:10.1007/s10750-013-1711-6

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. doi:10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Alves DS, Pereira JLG, Souza CL, Soares JV, Moreira JC, Ortiz JO, Shimabukuro YE, Yamaguchi F (1998) Classification of the deforested area in Central Rondônia using TM imagery. In: Rudorff BFT, Freitas UM (eds) Krug T. IX Simpósio Brasileiro de Sensoriamento Remoto, São Paulo, pp 1421–1432

    Google Scholar 

  • Angermeier PL, Karr JR (1994) Biological integrity versus biological diversity as policy directives: protecting biotic resources. Bioscience 44:690–697

    Article  Google Scholar 

  • Araújo NB, Tejerina-Garro FL (2009) Influence of environmental variables and anthropogenic perturbations on stream fish assemblages, upper Paraná River, Central Brazil. Neotrop Ichthyol 7:31–38

    Article  Google Scholar 

  • Ballester MVR, de Victoria D C, Krusche AV, Victoria RL, Richey JE (2012) Soil classification map, Ji-Parana River basin, Rondônia, Brazil. Data set from Oak Ridge National Laboratory Distributed Active Archive Center, U.S.A. http://daac.ornl.gov. Accessed 7 Dec 2013

  • Biggs BJF, Kilroy C, Lowe RL (1998) Periphyton development in three valley segments of a New Zealand grassland river: test of a habitat matrix conceptual model within a catchment. Arch Mikrobiol 143:147–177. doi:10.1127/archiv-hydrobiol/143/1998/147

    Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Brejão GL, Gerhard P, Zuanon J (2013) Functional trophic composition of the ichthyofauna of forest streams in eastern Brazilian Amazon. Neotrop Ichthyol 11:361–373. doi:10.1590/S1679-62252013005000006

    Article  Google Scholar 

  • Brown S, Lugo AE (1990) Tropical secondary forests. J Trop Ecol 6:1–32. doi:10.1017/S0266467400003989

    Article  Google Scholar 

  • Buckup PA, Menezes NA, Ghazzi MS (2007) Catálogo das espécies de peixes de água doce do Brasil. Série Livros 23, Rio de Janeiro

  • Calcagnotto D, Schaefer AS, DeSalle R (2005) Relationships among characiform fishes inferred from analysis of nuclear and mitochondrial gene sequences. Mol Phylogenet Evol 36:135–153. doi:10.1016/j.ympev.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  • Carvalho TP, Albert JS (2011) The Amazon-Paraguay divide. In: Albert JS, Reis RE (eds) Historical biogeography of neotropical freshwater fishes. University of California Press, Berkley, pp 193–202

    Google Scholar 

  • Carvalho LN, Fidelis L, Arruda R, Galuch A, Zuanon J (2013) Second floor, please: the fish fauna of floating litter banks in Amazonian streams and rivers. Neotrop Ichthyol 11:85–94. doi:10.1590/S1679-62252013000100010

    Article  Google Scholar 

  • Casatti L, Castro RMC (1998) A fish community of the São Francisco River headwater riffles, southeastern Brazil. Ichthyol Explor Freshw 9:229–242

    Google Scholar 

  • Casatti L, de Paula FC, Carvalho FR (2009) Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632:273–283. doi:10.1007/s10750-009-9849-y

    Article  Google Scholar 

  • Casatti L, Teresa FB, Gonçalves-Souza T, Bessa E, Manzotti AR, Gonçalves CS, Zeni J (2012) From forests to cattail: how does the riparian zone influence stream fish? Neotrop Ichthyol 10:205–214. doi:10.1590/S1679-62252012000100020

    Article  Google Scholar 

  • Casatti L, Pérez-Mayorga MA, Carvalho FR, Brejão GL, da Costa ID (2013) The stream fish fauna from the rio Machado basin, Rondônia state, Brazil. Check list 9:1496–1504. Doi: 10.15560/9.6.1496

  • Castro RMC (1999) Evolução da ictiofauna de riachos sul-americanos: padrões gerais e possíveis processos causais. Oecol Brasiliensis 6:139–155

    Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182. doi:10.1111/j.1461-0248.2005.00820.x

    Article  PubMed  Google Scholar 

  • Elosegi A, Pozo J (2005) Litter input. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition. A Practical Guide. Springer, Dordrecht, pp 3–11

    Chapter  Google Scholar 

  • Fausch KD, Torgersen CE, Baxter CV, Hiram WL (2002) Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Bioscience 52:483–498. doi:10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO

    Article  Google Scholar 

  • Fernandes IM, Lourenço LS, Ota RP, Moreira MMM, Zawadzki CH (2012) Effects of local and regional factors on the fish assemblage structure in meridional Amazonian streams. Environ Biol Fish 96:837–848. doi:10.1007/s10641-012-0079-1

    Article  Google Scholar 

  • Ferraz SFB, Vettorazzi CA, Theobald DM, Ballester MVR (2005) Landscape dynamics of Amazonian deforestation between 1984 and 2002 in central Rondônia, Brazil: assessment and future scenarios. Forest Ecol Manag 204:69–85. doi:10.1016/j.foreco.2004.07.073

    Article  Google Scholar 

  • Frissell CA, Liss W, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manag 10:199–214. doi:10.1007/BF01867358

    Article  Google Scholar 

  • Gerhard P (1999) Ecologia de populações e comportamento de quatro espécies de bagres Heptapterinae (Teleostei: Siluriformes) em riachos do Alto Vale do rio Ribeira (Iporanga, São Paulo). Dissertation, Universidade de São Paulo

  • Gilpin ME, Hanski IA (1991) Metapopulation dynamics: empirical and theoretical investigations. Academic, London

    Google Scholar 

  • Gregory SV, Swanson FJ, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. Bioscience 41:540–551

    Article  Google Scholar 

  • Growns IP, Gehrke C, Astles KL, Pollard DA (2003) A comparison of fish assemblages associated with different riparian vegetation types in the Hawkesbury–Nepean River system. Fish Manag Ecol 10:209–220. doi:10.1046/j.1365-2400.2003.00337.x

    Article  Google Scholar 

  • Hanski I (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210–221

    Article  Google Scholar 

  • Heatherly T, Whiles MR, Gibson DJ, Collins SL, Huryn AD, Jackson JK, Palmer MA (2007) Stream insect occupancy-frequency patterns and metapopulation structure. Oecologia 151:313–321. doi:10.1007/s00442-006-0596-8

    Article  CAS  PubMed  Google Scholar 

  • Heino J (2013) The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol Rev 88:166–178. doi:10.1111/j.1469-185X.2012.00244.x

    Article  PubMed  Google Scholar 

  • Heino J (2015) Deconstructing occupancy frequency distributions in stream insects: effects of body size and niche characteristics in different geographical regions. Ecol Entomol 40:491–499. doi:10.1111/een.12214

    Article  Google Scholar 

  • Heino J, Soininen J (2010) Are common species sufficient in describing turnover in aquatic metacommunities along environmental and spatial gradients? Limnol Oceanogr 55:2397–2402. doi:10.4319/lo.2010.55.6.2397

    Article  Google Scholar 

  • Hughes RG (1986) Theories and models of species. Am Nat 128(15):1–11

    Google Scholar 

  • Hugueni B (1990) Geographic range of west African freshwater fishes: role of biological characteristics and stochastic processes. Acta Oecol 11:351–375

    Google Scholar 

  • Jacobson B, Peres-Neto PR (2010) Quantifying and disentangling dispersal in metacommunities: how close have we come? How far is there to go? Landsc Ecol 25:495–507. doi:10.1007/s10980-009-9442-9

    Article  Google Scholar 

  • Jenkins DJ (2010) Ranked species occupancy curves reveal common patterns among diverse metacommunities. Glob Ecol Biogeogr 20:486–497

    Article  Google Scholar 

  • Jensen JR (2000) Remote sensing of the environment: an earth resources perspective. Prentice-Hall, Bergen

    Google Scholar 

  • Krumbein WC, Sloss LL (1963) Stratigraphy and sedimentation. Freeman, San Francisco

    Google Scholar 

  • Krusche AV, Ballester MVR, Victoria RL, Bernardes MC, Leite NK, Hanada L, Victoria DC, Toledo AM, Ometto JP, Moreira MZ, Gomes BM, Bolson MA, Neto SG, Bonelli N, Deegan L, Christopher N, Thomas S, Aufdenkampe AK, Richey JE (2005) Efeitos das mudanças do uso da terra na biogeoquímica dos corpos d’água da bacia do rio Ji-Paraná, Rondônia. Acta Amaz 35:197–205. doi:10.1590/S0044-59672005000200009

    Article  CAS  Google Scholar 

  • Landeiro VL, Magnusson WE, Melo AS, Espirito-Santo HMV, Bini LM (2011) Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshw Biol 56:1184–1192. doi:10.1111/j.1365-2427.2010.02563.x

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716

    Article  PubMed  Google Scholar 

  • Leibold MA (1998) Similarity and local co-existence of species in regional biotas. Evol Ecol 12:95–110. doi:10.1023/A:1006511124428

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi:10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  • Livingston GF, Philpott SM (2010) A metacommunity approach to co-ocurrence patterns and the core-satellite hypothesis in a community of tropical arboreal ants. Ecol Res 25:1129–1140

    Article  Google Scholar 

  • Lorion CM, Kennedy BP (2009) Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams. Ecol Appl 19:468–479. doi:10.1890/08-0050.1

    Article  PubMed  Google Scholar 

  • Lowe-McConnell RH (1975) Fish communities in tropical freshwaters. Longman, New York

    Google Scholar 

  • Marquet PA, Fernández M, Navarrete SA, Valdovinos C (2004) Diversity emerging: towards a deconstruction of biodiversity patterns. In: Lomolino M, Heaney L (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer Associates, Sunderland, pp 191–209

    Google Scholar 

  • May RM (1975) Patterns of species abundance and diversity. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Belknap Press of Harvard University Press, Cambridge, pp 81–120

    Google Scholar 

  • McGeoch MA, Gaston KJ (2002) Occupancy frequency distributions: patterns, artefacts and mechanisms. Biol Rev 77:311–331. doi:10.1017/S1464793101005887

    Article  PubMed  Google Scholar 

  • McMahon TE, Matter WJ (2006) Linking habitat selection, emigration and population dynamics of freshwater fishes: a synthesis of ideas and approaches. Ecol Freshw Fish 15:200–210. doi:10.1111/j.1600-0633.2006.00130.x

    Article  Google Scholar 

  • Mendonça FP, Magnusson WE, Zuanon J (2005) Relationships between habitat characteristics and fish assemblages in small streams of Central Amazonia. Copeia 4:751–764

    Article  Google Scholar 

  • Mérigoux S, Ponton D, Mérona B (1998) Fish richness and species- habitat relationships in two coastal streams of French Guiana, South America. Environ Biol Fish 51:25–39

    Article  Google Scholar 

  • Nathan RG, Perry JT, Cronin A, Strand E, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103:261–273. doi:10.1034/j.1600-0706.2003.12146.x

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH & Wagner H (2011) vegan: community ecology package. R Package Version 1.17–8. Available at http://CRAN.R- project.org/package=vegan

  • Pandit SN, Kolasa J, Cottenie K (2009) Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90:2253–2262. doi:10.1890/08-0851.1

    Article  PubMed  Google Scholar 

  • Pazin VFV, Magnusson WE, Zuanon J, Mendonça FP (2006) Fish assemblages in temporary ponds adjacent to 'terra-firme' streams in Central Amazonia. Freshw Biol 51:1025–1037. doi:10.1111/j.1365-2427.2006.01552.x

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625. doi:10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Petsch DK, Pinha GD, Dias JD, Takeda AM (2015) Temporal nestedness in Chironomidae and the importance of environmental and spatial factors in species rarity. Hydrobiologia 745:181–193. doi:10.1007/s10750-014-2105-0

    Article  Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  • Poff NL, Allan JD (1995) Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76:606–627

    Article  Google Scholar 

  • Pusey BJ, Arthington AH (2003) Importance of the riparian zone to the conservation and management of freshwater fish: a review. Mar Freshw Res 54:1–16. doi:10.1071/MF020411323-1650/03/010001

    Article  Google Scholar 

  • R Development Core Team (2011) R: A Language and Environment for Statistical Computing v2.15.2. R Foundation for Statistical Computing. Vienna. http://www.R-project.org. Accesed 10 June 2014

  • Reis RE, Kullander SO, Ferraris CJ Jr (2003) Check list of the freshwater fishes of south and central America (CLOFFSCA). Edipucrs, Porto Alegre

  • Resck DVS (1992) Manejo e conservação do solo em microbacias hidrográficas na região dos Cerrados. EMBRAPA-CPAC, Planaltina

  • Sabater F, Butturini A, Marti E, Muñoz I, Romani A, Wray J, Sabater S (2000) Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. J N Am Benthol Soc 19:609–620

    Article  Google Scholar 

  • Schlosser IJ (1982) Fish community structure and function along two habitat gradients in a headwater stream. Ecol Monogr 52:395–414. doi:10.2307/2937352

    Article  Google Scholar 

  • Schlosser IJ (1991) Stream fish ecology: a landscape perspective. Bioscience 41:704–712. doi:10.2307/1311765

    Article  Google Scholar 

  • Siqueira T, Bini LM, Roque FO, Marques Couceiro SR, Trivinho-Strixino S, Cottenie K (2012) Common and rare species respond to similar niche processes in macroinvertebrate metacommunities. Ecography 35:183–192. doi:10.1111/j.1600-0587.2011.06875.x

    Article  Google Scholar 

  • Stauffer JC, Goldstein RM, Newman RM (2000) Relationship of wooded riparian zones and runoff potential to fish community composition in agricultural streams. Can J Fish Aquat Sci 57:307–316

    Article  Google Scholar 

  • Sweeney BW, Blaine JG (2007) Resurrecting the in-stream side of riparian forests. J Contemp Water Res Educ 136:17–27

    Article  Google Scholar 

  • Sweeney BW, Newbold JD (2004) Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. J Am Water Resour Assoc 50:560–584. doi:10.1111/jawr.12203

    Article  Google Scholar 

  • Taylor CM, Warren ML Jr (2001) Dynamics in species composition of stream fish assemblages: environmental variability and nested subsets. Ecology 82:2320–2330. doi:10.1890/0012-9658(2001)082[2320:DISCOS]2.0.CO;2

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO v4 reference manual and CanoDraw for windows user’s guide: software for canonical community ordination. Microcomputer Power, Ithaca

    Google Scholar 

  • Titeux N, Dufrêne M, Jacob JP, Paquay M, Defourny P (2004) Multivariate analysis of a fine-scale breeding bird atlas using a geographical information system and partial canonical correspondence analysis: environmental and spatial effects. J Biogeogr 31:1841–1856. doi:10.1111/j.1365-2699.2004.01125.x

    Article  Google Scholar 

  • Tokeshi M (1992) Dynamics of distribution in animal communities: theory and analysis. Res Popul Ecol 34:249–273

    Article  Google Scholar 

  • Torrente-Vilara G, Queiroz LJ, Ohara WM (2013) Um breve histórico sobre o conhecimento da fauna de peixes do Rio Madeira. In: Queiroz LJ, Torrente-Vilara G, Ohara WM, Pires THS, Zuanon J, Doria CRC (eds) Peixes do Rio Madeira Volume I. Dialeto, São Paulo, pp 18–25

    Google Scholar 

  • Urban MC (2004) Disturbance heterogeneity determines freshwater metacommunity structure. Ecology 85:2971–2978. doi:10.1890/03-0631

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130-137

    Article  Google Scholar 

  • Winemiller KO, Agostinho AA, Pellegrini-Caramaschi E (2008) Fish ecology in tropical streams in: dudgeon D (ed) tropical stream ecology, San Diego, pp 107-146

Download references

Acknowledgements

This study was made possible by a collecting license provided by the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis IBAMA (4355-1) and by funding provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (2010/17494-8) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPQ (306758/2010-5). The authors thank Fernando R. Silva, Mauricio Cetra, Tadeu Siqueira, Virgínia S. Uieda and Francisco Langeani for their useful comments on the manuscript. We thank the anonymous reviewers and the editor in Chief. MAPM received fellowship from the Programa de Apoio a Estudantes de Doutorado do Exterior AUIP/UNESP; FBT and LC are supported by the CNPq; GLB is supported by FAPESP (2012/21916-0 and 2015/05827-6). We thank the UEG for funding the manuscript translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Angélica Pérez-Mayorga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Mayorga, M.A., Casatti, L., Teresa, F.B. et al. Shared or distinct responses between intermediate and satellite stream fish species in an altered Amazonian River?. Environ Biol Fish 100, 1527–1541 (2017). https://doi.org/10.1007/s10641-017-0663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-017-0663-5

Keywords

Navigation