Skip to main content
Log in

Fish diversity in tidepools: assembling effects of environmental heterogeneity

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Tidepools are considered ecosystems of high interchangeable fish biota. However, natural and anthropogenic actions that alter negatively marine ecosystems functioning (e.g., algal exploitation) are causing homogenization of fish biodiversity. Here, we describe the functional and taxonomic assembling of fishes in beach rocks of northeastern Brazil. Traits of fish species were retrieved from Fishbase and beta diversity was assessed by the dispersion of abundance, presence-absence and functional diversity in the multivariate space. We explained spatial-temporal variation in: alpha diversity, taxonomic and functional community composition; as well as temporal variation in functional, beta and gamma diversities. We found an annual stability in fish diversity and composition, and that fish biota was assembled mainly per tidepools’ depths. Substrate heterogeneity was correlated to depth, highlighting the role of local features as filters to organize the fish fauna vertically in tidepools, especially a cultivation of algae that influences the local assembling. We also highlight the uniqueness status of beach rocks in the Brazilian tropical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adjeroud M, Kayal M, Penin L (2015) In: Rossi S, Bramanti L, Gori A, del Valle C (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer International Publishing, Cham, pp 1–21

    Google Scholar 

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x

    Article  PubMed  Google Scholar 

  • Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. doi:10.1111/j.1461-0248.2010.01552.x

    Article  PubMed  Google Scholar 

  • Andrades R, Macieira RM, Reis-Filho JA et al (2016) Trapped in their own “home”: unexpected records of intertidal fish desiccation during low tides. J Appl Ichthyol:1–3. doi:10.1111/jai.13074

  • Arakaki S, Tokeshi M (2006) Short-term dynamics of tidepool fish community: diel and seasonal variation. Environ Biol Fish 76:221–235. doi:10.1007/s10641-006-9024-5

    Article  Google Scholar 

  • Arakaki S, Tsuchiya M, Tokeshi M (2014) Testing latitudinal patterns of tidepool fish assemblages: local substrate characteristics affect regional-scale trends. Hydrobiologia 733:45–62. doi:10.1007/s10750-013-1768-2

    Article  Google Scholar 

  • Baker DGL, Eddy TD, McIver R et al (2016) Comparative analysis of different survey methods for monitoring fish assemblages in coastal habitats. PeerJ 4:1–21. doi:10.7717/peerj.1832

    Article  Google Scholar 

  • Barbier E, Hacker SD (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Article  Google Scholar 

  • Barrett CJ, Johnson ML, Hull SL (2015) Diet as a mechanism of coexistence between intertidal fish species of the U.K. Hydrobiologia 768:125–135. doi:10.1007/s10750-015-2537-1

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. doi:10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  • Bizzarro JJ, Yoklavich MM, Wakefield WW (2016) Diet composition and foraging ecology of U.S. Pacific Coast groundfishes with applications for fisheries management. Environ Biol Fishes. doi:10.1007/s10641-016-0529-2

    Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) forward selection of explanatory variables. Ecology 89:2623–2632. doi:10.1890/07-0986.1

  • Bloch CP, Klingbeil BT (2016) Anthropogenic factors and habitat complexity influence biodiversity but wave exposure drives species turnover of a subtropical rocky inter-tidal metacommunity. Mar Ecol 37:64–76. doi:10.1111/maec.12250

    Article  Google Scholar 

  • Boettiger C, Lang DT, Wainwright PC (2012) Rfishbase: exploring, manipulating and visualizing FishBase data from R. J Fish Biol 81:2030–2039. doi:10.1111/j.1095-8649.2012.03464.x

    Article  CAS  PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68. doi:10.1016/S0304-3800(01)00501-4

    Article  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540. doi:10.1111/j.1654-1103.2005.tb02393.x

    Article  Google Scholar 

  • Bozec YM, Kulbicki M, Laloë F et al (2011) Factors affecting the detection distances of reef fish: implications for visual counts. Mar Biol 158:969–981. doi:10.1007/s00227-011-1623-9

    Article  Google Scholar 

  • Bueno LS, Bertoncini AA, Koenig CC et al (2016) Evidence for spawning aggregations of the endangered Atlantic goliath grouper Epinephelus Itajara in southern Brazil. J Fish Biol 89:876–889. doi:10.1111/jfb.13028

    Article  CAS  PubMed  Google Scholar 

  • Bush A, Harwood T, Hoskins AJ et al (2016) Current uses of Beta-diversity in biodiversity conservation: a response to Socolar et al. Trends Ecol Evol 31:337–338. doi:10.1016/j.tree.2016.02.020

    Article  PubMed  Google Scholar 

  • Carr MH, Anderson TW, Hixon M (2002) Biodiversity, population regulation, and the stability of coral-reef fish communities. Proc Natl Acad Sci U S A 99:11241–11245. doi:10.1073/pnas.162653499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellanos-Galindo GA, Giraldo A, Rubio EA (2005) Community structure of an assemblage of tidepool fishes on a tropical eastern Pacific rocky shore, Colombia. J Fish Biol 67:392–408. doi:10.1111/j.0022-1112.2005.00735.x

    Article  Google Scholar 

  • Chargulaf CA, Townsend KA, Tibbetts IR (2011) Community structure of soft sediment pool fishes in Moreton Bay, Australia. J Fish Biol 78:479–494. doi:10.1111/j.1095-8649.2010.02866.x

    Article  CAS  PubMed  Google Scholar 

  • Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science (80- ) 328:1388–1391. doi:10.1126/science.1187820

  • Christensen MS, Winterbottom R (1981) A correction factor for, and its application to, visual censuses of littoral fish. South African J Zool 16:73–79. doi:10.1080/02541858.1981.11447736

    Article  Google Scholar 

  • Cowen RK (2006) Scaling of Connectivity in Marine Populations. Science (80- ) 311:522–527. doi:10.1126/science.1122039

  • Cox TE, Baumgartner E, Philippoff J, Boyle KS (2011) Spatial and vertical patterns in the tidepool fish assemblage on the island of O′ahu. Environ Biol Fish 90:329–342. doi:10.1007/s10641-010-9744-4

    Article  Google Scholar 

  • Crabtree RE, Dean JM (1982) The structure of two South Carolina estuarine tide pool fish assemblages. Estuaries 5:2. doi:10.2307/1352211

    Article  Google Scholar 

  • Cunha EA, Carvalho RAA, Monteiro-Neto C et al (2008) Comparative analysis of tidepool fish species composition on tropical coastal rocky reefs at state of Ceará, Brazil. Iheringia Série Zool 98:379–390. doi:10.1590/S0073-47212008000300013

    Article  Google Scholar 

  • Davis J (2000) Spatial and seasonal patterns of habitat partitioning in a guild of southern California tidepool fishes. Mar Ecol Prog Ser 196:253–268. doi:10.3354/meps196253

    Article  Google Scholar 

  • Dethier MN (1984) Disturbance and recovery in intertidal pools: maintenance of mosaic patterns. Ecol Monogr 54:99–118. doi:10.2307/1942457

    Article  Google Scholar 

  • Eschmeyer WN, Fricke R (2011) Species of fishes by family/subfamily. In: Cat. Fishes Electron. version. http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

  • Ferreira CEL, Luiz OJ, Floeter SR et al (2015) First record of invasive lionfish (Pterois Volitans) for the Brazilian coast. PLoS One 10:1–5. doi:10.1371/journal.pone.0123002

    CAS  Google Scholar 

  • Freitas JEP, Lotufo TMC (2015) Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. J Mar Biol Assoc United Kingdom 95:623–633. doi:10.1017/S0025315414001404

    Article  Google Scholar 

  • Froese R, Pauly D (2012) FishBase. World Wide Web electronic publication. In: version (01/2012). http://www.fishbase.org.

  • Gibson RN (1972) The vertical distribution and feeding relationships of intertidal fish on the Atlantic coast of France. J Anim Ecol 41:189–207. doi:10.2307/3512

    Article  Google Scholar 

  • Gibson RN, Yoshiyama RM (1999) Intertidal fish communities. Intertidal fishes life two worlds:264–296

  • Godinho WO, Lotufo TMC (2010) Local v. Microhabitat influences on the fish fauna of tidal pools in north-East Brazil. J Fish Biol 76:487–501. doi:10.1111/j.1095-8649.2009.02501.x

    Article  CAS  PubMed  Google Scholar 

  • Grieve B, Curchitser E, Rykaczewski R (2016) Range expansion of the invasive lionfish in the Northwest Atlantic with climate change. Mar Ecol Prog Ser 546:225–237. doi:10.3354/meps11638

    Article  Google Scholar 

  • Griffiths SP (2003) Rockpool ichthyofaunas of temperate Australia: species composition, residency and biogeographic patterns. Estuar Coast Shelf Sci 58:173–186. doi:10.1016/S0272-7714(03)00073-8

    Article  Google Scholar 

  • Gutterres Giordano R, Neves dos Santos L (2014) Comparative analysis of free and scuba diving for benthopelagic and cryptic fish species associated with rocky reefs. Lat Am J Aquat Res 42:301–306. doi:10.3856/vol42-issue2-fulltext-2

    Article  Google Scholar 

  • Halpern B, Floeter S (2008) Functional diversity responses to changing species richness in reef fish communities. Mar Ecol Prog Ser 364:147–156. doi:10.3354/meps07553

    Article  Google Scholar 

  • Heino J, Melo AS, Siqueira T et al (2015) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60:845–869. doi:10.1111/fwb.12533

    Article  Google Scholar 

  • Hilomen-Garcia G, Reyes RD, Garcia CMH (2003) Tolerance and growth of juvenile seahorse Hippocampus Kuda exposed to various salinities. J Appl Ichthyol 19:94–98

    Article  Google Scholar 

  • Human P, DeLoach N (2002) Reef Fish Identification. Florida Caribbean Bahamas, 3rd edn. New World Publications, Inc. Jacksonville, Fl. Printed by Star Standard Industries Pte LTD, Singapore

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • Jones KMM, Fitzgerald DG, Sale PF (2002) Comparative ecology of marine fish communities. In: Handbook of Fish Biology and Fisheries. Wiley Online Library, pp 341–358

  • Jordaan A, Crocker J, Chen Y (2011) Linkages among physical and biological properties in tidepools on the Maine coast. Environ Biol Fish 92:13–23. doi:10.1007/s10641-011-9812-4

    Article  Google Scholar 

  • Kolasa J, Manne LL, Pandit SN (2012) Species-area relationships arise from interaction of habitat heterogeneity and species pool. Hydrobiologia 685:135–144. doi:10.1007/s10750-011-0846-6

    Article  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi:10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • Leitão RP, Zuanon J, Villéger S et al (2016) Rare species contribute disproportionately to the functional structure of species assemblages. Proc R Soc B Biol Sci 283:1–9. doi:10.1098/rspb.2016.0084

    Article  Google Scholar 

  • Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461:254–257. doi:10.1038/nature08251

    Article  CAS  PubMed  Google Scholar 

  • Lobato CMC, Soares BE, Begot TOR, Montag LFA (2016) Tidal pools as habitat for juveniles of the goliath grouper Epinephelus Itajara (Lichtenstein 1822) in the Amazonian coastal zone, Brazil. Nat Conserv 14:20–23. doi:10.1016/j.ncon.2015.12.001

    Article  Google Scholar 

  • Lucrezi S, van der Walt MF (2016) Beachgoers’ perceptions of sandy beach conditions: demographic and attitudinal influences, and the implications for beach ecosystem management. J Coast Conserv 20:81–96. doi:10.1007/s11852-015-0419-3

    Article  Google Scholar 

  • Machado FS, Macieira RM, Zuluaga Gómez MA et al (2015) Checklist of tidepool fishes from Jericoacoara National Park, southwestern Atlantic, with additional ecological information. Biota Neotrop 15:1–9. doi:10.1590/1676-06032015011114

    Article  Google Scholar 

  • Macieira RM, Joyeux JC (2011) Distribution patterns of tidepool fishes on a tropical flat reef. Fish Bull 109:305–315

    Google Scholar 

  • Macieira RM, Simon T, Pimentel CR, Joyeux JC (2014) Isolation and speciation of tidepool fishes as a consequence of Quaternary Sea-level fluctuations. Environ Biol Fish 98:385–393. doi:10.1007/s10641-014-0269-0

    Article  Google Scholar 

  • Martin KL (1995) Time and tide wait for no fish: intertidal fishes out of water. Environ Biol Fish 44:165–181. doi:10.1007/BF00005914

    Article  Google Scholar 

  • Menezes NA, Buckup PA, Figueiredo JL, Moura RL (2003) Catálogo das Espécies de Peixes Marinhos do Brasil. Museu de Zoologia USP, São Paulo

    Google Scholar 

  • Messmer V, Jones G, Munday P, Holbrook S (2011) Habitat biodiversity as a determinant of fish community structure on coral reefs. Ecology 92:2285–2298

    Article  PubMed  Google Scholar 

  • Metcalfe K, Vaz S, Engelhard GH et al (2015) Evaluating conservation and fisheries management strategies by linking spatial prioritization software and ecosystem and fisheries modelling tools. J Appl Ecol 52:665–674. doi:10.1111/1365-2664.12404

    Article  Google Scholar 

  • Methratta ET (2004) Top-down and bottom-up factors in tidepool communities. J Exp Mar Bio Ecol 299:77–96. doi:10.1016/j.jembe.2003.09.004

    Article  Google Scholar 

  • Mittelbach GG, Schemske DW (2015) Ecological and evolutionary perspectives on community assembly. Trends Ecol Evol 30:241–247. doi:10.1016/j.tree.2015.02.008

    Article  PubMed  Google Scholar 

  • Mora C, Chittaro PM, Sale PF et al (2003) Patterns and processes in reef fish diversity. Nature 421:933–936. doi:10.1038/nature01421.1

    Article  CAS  PubMed  Google Scholar 

  • Moring JR (1986) Seasonal presence of tidepool fish species in a rocky intertidal zone of northern California, USA. Hydrobiologia 134:21–27. doi:10.1007/BF00008696

    Article  Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876. doi:10.1111/j.1365-2435.2010.01695.x

    Article  Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. John Wiley & Sons, Hoboken (New Jersey)

  • Oksanen J, Blanchet FG, Kindt R, et al. (2015) vegan: Community Ecology Package.

  • Oliveira RRS, Macieira RM, Giarrizzo T (2016) Ontogenetic shifts in fishes between vegetated and unvegetated tidepools: assessing the effect of physical structure on fish habitat selection. J Fish Biol 89:959–976. doi:10.1111/jfb.13013

    Article  PubMed  Google Scholar 

  • Pereira PHC, Moraes RL, dos Santos MVB et al (2014) The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol Res 61:375–384. doi:10.1007/s10228-014-0409-8

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, et al. (2013) nlme: Linear and Nonlinear Mixed Effects Models. R Packag. version 3.1–113 R package:1–86.

  • Pool TK, Cucherousset J, Boulêtreau S et al (2016) Increased taxonomic and functional similarity does not increase the trophic similarity of communities. Glob Ecol Biogeogr 25:46–54. doi:10.1111/geb.12384

    Article  Google Scholar 

  • Pusack TJ, Benkwitt CE, Cure K, Kindinger TL (2016) Invasive red lionfish (Pterois volitans) grow faster in the Atlantic Ocean than in their native Pacific range. Environ Biol Fish 99:571–579. doi:10.1007/s10641-016-0499-4

    Article  Google Scholar 

  • R Core Team (2015) R: A Language and Environment for Statistical Computing.

  • Rangel CA, Chaves LCT, Monteiro-Neto C (2007) Baseline assessment of the reef fish assemblage from Cagarras archipelago, Rio de Janeiro, southeastern Brazil. Brazilian J Oceanogr 55:7–17. doi:10.1590/S1679-87592007000100002

    Article  Google Scholar 

  • Ritter AF (2008) Habitat variation influences movement rates and population structure of an intertidal fish. Oecologia 157:429–439. doi:10.1007/s00442-008-1086-y

    Article  PubMed  Google Scholar 

  • Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26:340–348. doi:10.1016/j.tree.2011.03.024

    Article  PubMed  Google Scholar 

  • Sabino J (1999) Comportamento de peixes em riachos: métodos de estudo para uma abordagem naturalística. Oecologia Aust 6:183–208. doi:10.4257/oeco.1999.0601.06

    Article  Google Scholar 

  • Sale PF (1980) Assemblages of fish on patch reefs - predictable or unpredictable? Environ Biol Fish 5:243–249. doi:10.1007/BF00005358

    Article  Google Scholar 

  • Shanksa AL, Pfisterb CA (2009) Annual recruitment of three species of tide-pool fishes is driven by variation in springtime coastal hydrodynamics. Limnol Oceanogr 54:1481–1487. doi:10.4319/lo.2009.54.5.1481

    Article  Google Scholar 

  • Shulman MJ (1985) Variability in recruitment of coral reef fishes. J Exp Mar Bio Ecol 89:205–219. doi:10.1016/0022-0981(85)90127-3

    Article  Google Scholar 

  • Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) Sparse data necessitate explicit treatment of Beta-diversity: a reply to bush et al. Trends Ecol Evol 31:338–339. doi:10.1016/j.tree.2016.02.019

    Article  PubMed  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi:10.1890/07-1206.1

    Article  PubMed  Google Scholar 

  • Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522. doi:10.1890/09-1310.1

    Article  PubMed  Google Scholar 

  • Vitule JRS, Costa, APLda, Frehse FA, et al. (2016) Comments on “Fish biodiversity and conservation in South America by Reis et al. (2016)”. J Fish Biol. doi:10.1111/jfb.13239

  • Watson JL, Huntington BE (2016) Assessing the performance of a cost-effective video lander for estimating relative abundance and diversity of nearshore fish assemblages. J Exp Mar Bio Ecol 483:104–111. doi:10.1016/j.jembe.2016.07.007

    Article  Google Scholar 

  • White GE, Brown C (2013) Site fidelity and homing behaviour in intertidal fishes. Mar Biol 160:1365–1372. doi:10.1007/s00227-013-2188-6

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338. doi:10.2307/1943563

    Article  Google Scholar 

  • Witman JD, Lamb RW, Byrnes JEK (2015) Towards an integration of scale and complexity in marine ecology. Ecol Monogr 85:475–504. doi:10.1890/14-2265.1

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, et al. (2009) Mixed Effects Models and Extensions in Ecology with R.

Download references

Acknowledgements

We are thankful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) by student’s scholarship for the first author, and other funding to this Project. Laboratório de Ecologia Aquática, Laboratório de Ecologia Pesqueira, Labomar (both from Universidade Federal do Ceará) to subside our samples and logistics and FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico) for financial support. IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) and ICMBio (Instituto Chico Mendes de Conservação da Biodiversidade), the federal regulatory agencies considering animal care in Brazil, support non-invasive approaches for fish census, such as the employed here. We thus declare that there is no conflict considering animal care or ethics committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Artur Valões Bezerra.

Electronic supplementary material

ESM 1

(DOCX 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, L.A.V., Padial, A.A., Mariano, F.B. et al. Fish diversity in tidepools: assembling effects of environmental heterogeneity. Environ Biol Fish 100, 551–563 (2017). https://doi.org/10.1007/s10641-017-0584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-017-0584-3

Keywords

Navigation