Skip to main content
Log in

A rod-dominated visual system in leptocephalus larvae of elopomorph fishes (Elopomorpha: Teleostei)

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The nature and distributions of photoreceptor cell types were investigated in the retinas of 12 species (5 families) of elopomorph anguilliform leptocephalus larvae. Anti-opsin immunofluorescence, light microscopy and transmission electron microscopy (TEM) were used to assess opsin distribution across the retinas and to associate photoreceptor morphology and opsin content. Retinas of all species were immunoreactive with anti-rhodopsin throughout, while anti-cone opsin immunoreactivity was restricted only to the ventral region of the retina in all specimens. Rod and cone photoreceptors were morphologically indistinguishable at low magnifications; TEM revealed that nearly all photoreceptors had rod-like ultrastructure, with only rare examples of cone-like cells identified in the ventral retina. These results indicate a rhodopsin/rod-dominated retina in leptocephalus larvae of anguilliform eels in the teleost subdivision Elopomorpha, contrasting with the cone-dominated retinas of nearly all other species of teleost larvae. This distinctive developmental pattern shared among elopomorph larvae has important evolutionary and ecological implications, indicating a shared ancestor and/or ecological characteristics that are very different from most other teleost larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blaxter JHS (1986) Development of sense organs and behaviour of teleost larvae with special references to feeding and predator avoidance. Trans Am Fish Soc 115:98–114

    Article  Google Scholar 

  • Blaxter JHS, Staines M (1970) Pure-cone retinae and retinomotor responses in larval teleosts. J Mar Biol Assoc UK 50:449–460

    Article  Google Scholar 

  • Böhlke EB (ed) (1989a) Fishes of the western North Atlantic, part 9, vol 2: leptocephali. Sears Foundation for Marine Research, Yale University, New Haven

    Google Scholar 

  • Böhlke EB (ed) (1989b) Fishes of the western North Atlantic, part 9, vol 1: anguilliformes. Sears Foundation for Marine Research, Yale University, New Haven

    Google Scholar 

  • Bowmaker JK, Semo M, Hunt DM, Jeffery G (2008) Eel visual pigments revisited: the fate of retinal cones during metamorphosis. Vis Neurosci 25(3):249–255

    Article  PubMed  Google Scholar 

  • Britt LL, Loew ER, McFarland WN (2001) Visual pigments in the early life stages of Pacific northwest marine fishes. J Exp Biol 204:2581–2587

    PubMed  CAS  Google Scholar 

  • Evans BI, Fernald RD (1990) Metamorphosis and fish vision. J Neurobiol 21(7):1037–1052. doi:10.1002/neu.480210709

    Article  PubMed  CAS  Google Scholar 

  • Evans BI, Fernald RD (1993) Retinal transformation at metamorphosis in the winter flounder (Pseudopleuronectes americanus). Vis Neurosci 10(6):1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Evans BI, Hárosi FI, Fernald RD (1993) Photoreceptor spectral absorbance in larval and adult winter flounder (Pseudopleuronectes americanus). Vis Neurosci 10(6):1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Filleul A, Lavoue S (2001) Basal teleosts and the question of elopomorph monophyly. Morphological and molecular approaches. C R Acad Sci III 324(4):393–399

    Article  PubMed  CAS  Google Scholar 

  • Haacke C, Hess M, Melzer RR, Gebhart H, Smola U (2001) Fine structure and development of the retina of the grenadier anchovy Coilia nasus (Engraulididae, Clupeiformes). J Morphol 248(1):41–55. doi:10.1002/jmor.1019

    Article  PubMed  CAS  Google Scholar 

  • Helvik JV, Drivenes Ø, Harboe T, Seo HC (2001) Topography of different photoreceptor cell types in the larval retina of Atlantic halibut (Hippoglossus hippoglossus). J Exp Biol 204:2553–2559

    PubMed  CAS  Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2004) Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. Mol Phylogenet Evol 32(1):274–286. doi:10.1016/j.ympev.2003.11.009

    Article  PubMed  CAS  Google Scholar 

  • Lara MR (2001) Morphology of the eye and visual acuities in the settlement-intervals of some coral reef fishes (Labridae, Scaridae). Environ Biol Fish 62:365–378

    Article  Google Scholar 

  • Miller MJ (2009) Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua-BioSci Monogr (ABSM) 2(4):1–94

    Article  Google Scholar 

  • Mochioka N, Iwamizu M (1996) Diet of anguilloid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar Biol 125:447–452

    Google Scholar 

  • Mochioka N, Iwamizu M, Kanda T (1993) Leptocephalus eel larvae will feed in aquaria. Environ Biol Fish 36:381–384

    Article  Google Scholar 

  • Negishi K, Wagner HJ (1995) Differentiation of photoreceptors, glia, and neurons in the retina of the cichlid fish Aequidens pulcher; an immunocytochemical study. Brain Res Dev Brain Res 89(1):87–102

    Article  PubMed  CAS  Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Obermiller LE, Pfeiler E (2003) Phylogenetic relationships of elopomorph fishes inferred from mitochondrial ribosomal DNA sequences. Mol Phylogenet Evol 26(2):202–214

    Article  PubMed  CAS  Google Scholar 

  • Omura Y, Kasumsa U, Tachiki H, Furukawa K, Satoh H (1997) Cone cells appear also in the retina of Eel larvae. Fisheries Sci 63:1052–1053

    CAS  Google Scholar 

  • Otake T, Nogami K, Maruyama K (1993) Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar Ecol Prog Ser 92:27–34

    Article  Google Scholar 

  • Pankhurst N (1984) Retinal development in larval and juvenile European eel, Anguilla anguilla (L.). Can J Zool 62(3):335–343

    Article  Google Scholar 

  • Pankhurst PM, Pankhurst NW, Montgomery JC (1993) Comparison of behavioural and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion varium, tripterygiidae (Forster, 1801). Brain Behav Evol 42(3):178–188

    Article  PubMed  CAS  Google Scholar 

  • Pfeiler E (1986) Towards an explanation of the developmental strategy in leptocephalus larvae of marine teleosts. Environ Biol Fish 15(1):3–13

    Article  Google Scholar 

  • Pfeiler E (1989) Sensory systems and behavior of premetamorphic and metamorphic leptocephalous larvae. Brain Behav Evol 34(1):25–34

    Article  PubMed  CAS  Google Scholar 

  • Richardson DE, Cowen RK (2004) New leptocephalus types collected around the island of Barbados. Copeia 4:888–895

    Article  Google Scholar 

  • Shand J (1994) Changes in retinal structure during development and settlement of the goatfish Upeneus tragula. Brain Behav Evol 43(1):51–60

    Article  PubMed  CAS  Google Scholar 

  • Shand J (1997) Ontogenetic changes in retinal structure and visual acuity: a comparative study of coral-reef teleosts with differing post-settlement lifestyles. Environ Biol Fish 49:307–322

    Article  Google Scholar 

  • Taylor SM, Grace M (2005) Development of retinal architecture in the elopomorph species Megalops atlanticus, Elops saurus and Albula vulpes (Elopomorpha: Teleostei). Contrib Mar Sci 37:1–29

    Google Scholar 

  • Taylor SM, Loew E, Grace M (2010) Developmental shifts in functional morphology of the retina in Atlantic tarpon, Megalops atlanticus (Elopomorpha: Teleostei) between four ecologically distinct life history stages. Vis Neurosci. doi:10.1017/S0952523810000362

  • van der Meer HJ (1994) Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain Behav Evol 44(1):40–49

    Article  PubMed  Google Scholar 

  • Wang C-H, Kuo C-H, Mok H-K, Lee S-C (2003) Molecular phylogeny of elopomorph fishes inferred from mitochondrial 12S ribosomal RNA sequences. Zool Scr 32:231–241

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Sigma-Xi Grant-in-Aid of Research to S.M. Taylor. R. Cowen and many members of his team at the University of Miami RSMAS allowed use of their vessel, equipment and personnel to help collect larvae. W.J. DeGrip (U. Nijmegen, Netherlands) donated the primary antisera for the immunological staining. C. Harris (Florida Tech), assisted with the immunostaining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Grace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, S.M., Loew, E.R. & Grace, M.S. A rod-dominated visual system in leptocephalus larvae of elopomorph fishes (Elopomorpha: Teleostei). Environ Biol Fish 92, 513–523 (2011). https://doi.org/10.1007/s10641-011-9871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-011-9871-6

Keywords

Navigation