Skip to main content

Advertisement

Log in

The Role of Industrial and Market Symbiosis in Stimulating CO2 Emission Reductions

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

An increasing concern for climate change puts pressure on industrial firms to achieve carbon emission reductions. These could be realized through cooperation among firms in industrial chains, which leads to industrial symbiosis. By taking a real options approach, we make the timing component of the investment decisions explicit. This is important in assessing the impact of carbon-reducing investment over a specific time-span. We show that a joint venture between a CO2 emitting firm and a firm that can use the CO2 will result in a higher probability that an investment in CO2 capture will take place within a specific time period, which reduces the amount of CO2 emitted substantially. We also show that, in addition to industrial symbiosis, cooperation between firms can benefit from “market symbiosis” as well, in the sense that investments are more likely to take place in markets that are positively correlated. This is an important result, given that the EU has set binding targets to its Member States for reducing their emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that continuity of \(V_J\) and \(F_J\) imply that \({{\mathcal {C}}}\) is an open set.

References

  • Agi MAN, Faramarzi-Oghani S, Öncü Hazır (2020) Game theory-based models in green supply chain management: a review of the literature. Int J Prod Res 59:4736–4755

    Article  Google Scholar 

  • Albino V, Fraccascia L, Giannoccaro I (2016) Exploring the role of contracts to support the emergence of self-organized industrial symbiosis networks: an agent-based simulation study. J Clean Prod 112:4353–4366

    Article  Google Scholar 

  • Aliprantis C, Border K (2006) Infinite dimensional analysis, 3rd edn. Springer, Berlin

    Google Scholar 

  • Banerjee S, Güçbilmez U, Pawlina G (2014) Optimal exercise of jointly held real options: a Nash bargaining approach with value diversion. Eur J Oper Res 239(2):565–578

    Article  Google Scholar 

  • Bicer I, Hagspiel V (2016) Valuing quantity flexibility under supply chain disintermediation risk. Int J Prod Econ 180:1–15

    Article  Google Scholar 

  • Boomsma TK, Linnerud K (2015) Market and policy risk under different renewable electricity support schemes. Energy 89:435–448

    Article  Google Scholar 

  • Bosetti V, Carraro C, Tavoni M (2012) Timing of mitigation and technology availability in achieving a low-carbon world. Environ Resour Econ 51(3):353–369

    Article  Google Scholar 

  • Chen P (2012) The investment strategies for a dynamic supply chain under stochastic demands. Int J Prod Econ 139(1):80–89

    Article  Google Scholar 

  • Chertow MR (2000) Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ 25(1):313–337

    Article  Google Scholar 

  • Chiou J-R, Hu J-L (2001) Environmental research joint ventures under emission taxes. Environ Resour Econ 20(2):129–146

    Article  Google Scholar 

  • Compernolle T, Welkenhuysen K, Huisman K, Piessens K, Kort P (2017) Off-shore enhanced oil recovery in the north sea: the impact of price uncertainty on the investment decisions. Energy Policy 101:123–137

    Article  Google Scholar 

  • Dixit A, Pindyck R (1994) Investment under uncertainty. Princeton University Press, Princeton

    Book  Google Scholar 

  • European Commission (2014) A policy framework for climate and energy: the period from 2020 to 2030. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions

  • Fahimnia B, Sarkis J, Davarzani H (2015) Green supply chain management: a review and bibliometric analysis. Int J Prod Econ 162:101–114

    Article  Google Scholar 

  • Ghiat I, Al-Ansari T (2021) A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. J CO2 Util 45:101432

    Article  Google Scholar 

  • Ghosh D, Shah J (2015) Supply chain analysis under green sensitive consumer demand and cost sharing contract. Int J Prod Econ 164:319–329

    Article  Google Scholar 

  • Halland E, Pham V, Riis F, Hansen A-H (2018) CO2 for EOR combined with storage in the Norwegian North Sea. In: 14th Greenhouse gas control technologies conference Melbourne 21–26 October 2018 (GHGT-14)

  • He M, Jin Y, Zeng H, Cao J (2020) Pricing decisions about waste recycling from the perspective of industrial symbiosis in an industrial park: a game model and its application. J Clean Prod 251:119417

    Article  Google Scholar 

  • International Energy Agency (2020) CCUS in clean energy transitions—IEA, Paris

  • Kushner H (1997) Numerical methods for stochastic control problems in finance. In: Dempster M, Pliska S (eds) Mathematics of derivative securities. Cambridge University Press, Cambridge

    Google Scholar 

  • Kushner H, Dupuis P (2001) Numerical methods for stochastic control problems in continuous time, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Lukas E, Welling A (2014) Timing and eco(nomic) efficiency of climate-friendly investments in supply chains. Eur J Oper Res 233(2):448–457

    Article  Google Scholar 

  • Naims H (2020) Economic aspirations connected to innovations in carbon capture and utilization value chains. J Ind Ecol 24(5):1126–1139

    Article  Google Scholar 

  • Øksendal B (2000) Stochastic differential equations, 5th edn. Springer, Berlin

    Google Scholar 

  • Quandl (2021) ECX EUA futures. https://www.quandl.com

  • Roefs P, Moretti M, Welkenhuysen K, Piessens K, Compernolle T (2019) CO2-enhanced oil recovery and CO2 capture and storage: an environmental economic trade-off analysis. J Environ Manag 239:167–177

    Article  Google Scholar 

  • US Energy Information Administration (2021) Spot prices for crude oil and petroleum products. https://www.eia.gov/dnav/pet/hist/rbrteW.htm. Accessed 5 July 2021

  • Wang X, Qie S (2018) When to invest in carbon capture and storage: a perspective of supply chain. Comput Ind Eng 123:26–32

    Article  Google Scholar 

  • World Bank (2021) State and trends of carbon pricing 2021. World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/35620. License: CC BY 3.0 IGO

  • Zhang B, Wang Z (2014) Inter-firm collaborations on carbon emission reduction within industrial chains in China: practices, drivers and effects on firms’ performances. Energy Econ 42:115–131

    Article  Google Scholar 

  • Zhang D, Alhorr Y, Elsarrag E, Marafia AH, Lettieri P, Papageorgiou LG (2017) Fair design of ccs infrastructure for power plants in Qatar under carbon trading scheme. Int J Greenh Gas Control 56:43–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tine Compernolle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Proposition 2

To keep notation simple we identify \(X=P_U\) and \(Y=P_D\). We restrict attention to the set E of points in \({\mathbb{R}}^2_+\) where all the first and second-order partial derivatives of \(\varphi \) are well-defined. Note that for every \(t\ge 0\) it holds that \((X_t,Y_t)\in E\), \({\mathbb{P}}\)-a.s.

For any \(\varphi \ge F_J\) that is \(C^2\)-a.e., the HJB equation (13) can be re-written as a pair of variational inequalities on \({\mathbb{R}}^2_+\):

$$ {\left\{ \begin{array}{ll} {{\mathscr {L}}}\varphi (x,y)-r\varphi (x,y)\le 0 &{\quad}\text {when }\varphi (x,y)=F_J(x,y),\text { and}\\ {{\mathscr {L}}}\varphi (x,y)-r\varphi (x,y)=0 &{\quad}\text {when } \varphi (x,y)>F_J(x,y). \end{array}\right. } $$

Let

$$ {{\mathcal {C}}}= \{(x,y)\in {\mathbb{R}}^2_+|\varphi (x,y)>F_J(x,y)\}, $$

and define the stopping time

$$ \tau _{{\mathcal {C}}}= \inf \{t\ge 0|(X_t,Y_t)\not \in {{\mathcal {C}}}\}. $$

Noting that

$$ {\mathbb{E}}\left[ e^{-r\tau _{{\mathcal {C}}}}\varphi (X_{\tau _{{\mathcal {C}}}},Y_{\tau _{{\mathcal {C}}}})\right] =0, $$

on \(\{\tau _{{\mathcal {C}}}=\infty \}\), it follows from Dynkin’s formula (see, e.g., Øksendal 2000) and the fact that \(\varphi =F_J\) on \(\partial {{\mathcal {C}}}\) (by a.s.-continuity of sample paths) that

$$\begin{aligned} {\mathbb{E}}\left[ e^{-r\tau _{{\mathcal {C}}}}J_V(X_{\tau _{{\mathcal {C}}}},Y_{\tau _{{\mathcal {C}}}})\right]&= {\mathbb{E}}\left[ e^{-r\tau _{{\mathcal {C}}}}\varphi (X_{\tau _{{\mathcal {C}}}},Y_{\tau _{{\mathcal {C}}}})\right] \\ &= \varphi (x,y)+{\mathbb{E}}\left[ \int _0^{\tau _{{\mathcal {C}}}}e^{-rt}\left( {{\mathscr {L}}}\varphi (X_t,Y_t)-r\varphi (X_t,Y_t)\right) {\rm d}t\right] \\ &= \varphi (x,y). \end{aligned}$$

Now consider any other stopping time \(\tau \in {{\mathcal {M}}}\). Then another application of Dynkin’s formula shows that

$$\begin{aligned} {\mathbb{E}}\left[ e^{-r\tau }J_V(X_{\tau },Y_{\tau })\right]& \le {\mathbb{E}}\left[ e^{-r\tau }\varphi (X_{\tau },Y_{\tau })\right] \\ &= \varphi (x,y)+{\mathbb{E}}\left[ \int _0^{\tau }e^{-rt}\left( {{\mathscr {L}}}\varphi (X_t,Y_t)-r\varphi (X_t,Y_t)\right) {\rm d}t\right] \\ &\le \varphi (x,y). \end{aligned}$$

Therefore, it follows that \(V_J=\varphi \) and that the optimal stopping time in (14) is \(\tau _{{\mathcal {C}}}\), as claimed. \(\square \)

Appendix 2: Numerical Implementation

Our numerical implementation of the optimal stopping problem (12) uses the Markov chain approximation method as described in, e.g., Kushner (1997) and Kushner and Dupuis (2001). Our optimal stopping problem is of the form

$$ V(x,y)= \sup _{\tau \in {{\mathcal {M}}}}{\mathbb{E}}\left[ -\int _0^{\tau }e^{-rt}c(X_t){\rm d}t+e^{-r\tau }F(X_\tau ,Y_\tau )\right] , $$
(14)

where

$$ \left[\begin{array}{l}{\rm d}X/X\\ {\rm d}Y/Y\end{array}\right]= \left[\begin{array}{l}\alpha _1\\ \alpha _2\end{array}\right]{\rm d}t+ \left[\begin{array}{ll}\sigma _1 &{\quad} \rho \sigma _1\sigma _2\\ \rho \sigma _1\sigma _2 &{\quad} \sigma _y\end{array}\right] \left[\begin{array}{l}{\rm d}W_1\\ {\rm d}W_2\end{array}\right], $$

and \(x\mapsto c(x)\) represents the running costs, which are here given by the costs of CO2 emissions.

For numerical stability is desirable to use the following transformation of variables:

$$ U:=\log (X),\quad \text {and}\quad V:=\log (Y). $$

Letting the functions \({\hat{F}}:{\mathbb{R}}_2\rightarrow {\mathbb{R}}\) and \({\hat{c}}:{\mathbb{R}}\rightarrow {\mathbb{R}}\) be such that

$$ {\hat{F}}(u,v) := F\left( e^u,e^v\right) ,\quad \text {and}\quad {\hat{c}}(u):=c\left( e^u\right) ,\quad \text {all } u,v\in {\mathbb{R}}, $$

we can then rewrite (14) as

$$ {\hat{V}}(u,v)= \sup _{\tau \in {{\mathcal {M}}}}{\mathbb{E}}\left[ -\int _0^{\tau }e^{-rt}{\hat{c}}(U_t){\rm d}t+e^{-r\tau }{\hat{F}}(U_\tau ,U_\tau )\right] , $$

where

$$ \left[\begin{array}{l}{\rm d}U\\ {\rm d}V\end{array}\right]= \left[\begin{array}{ll}\alpha _1-\sigma _1^2/2\\ \alpha _2-\sigma _2^2/2\end{array}\right]{\rm d}t+ \left[\begin{array}{ll}\sigma _1 &{} \rho \sigma _1\sigma _2\\ \rho \sigma _1\sigma _2 &{} \sigma _2\end{array}\right] \left[\begin{array}{l}{\rm d}W_1\\ {\rm d}W_2\end{array}\right], $$

which has the property that

$$ V\left( x,y\right) ={\hat{V}}(\log (x),\log (y)),\quad \text {all } x,y\in {\mathbb{R}}_{++}. $$

Note that a straightforward application of Ito’s lemma gives that

$$ {\rm d}U = (\mu _1-\sigma _1^2/2){\rm d}t+\sigma _1{\rm d}W_1,\quad \text {and}\quad {\rm d}V = (\mu _2-\sigma _2^2/2){\rm d}t+\sigma _2{\rm d}W_2. $$

The basic idea is to replace the the continuous-time stochastic process (U, V) by a discrete-time Markov chain \((U^h,V^h)\), where \(h>0\) is the step-size on a grid over

$$ G := [{\underline{u}},{\overline{u}}]\times [{\underline{v}},{\overline{v}}] $$

for some \({\underline{u}}<{\overline{u}}\) and \({\underline{v}}<{\overline{v}}\) that ensure that G is large enough to produce an accurate approximation to \({\hat{V}}\). In our case we choose

$$ {\underline{u}}={\underline{v}}=-10,\quad {\overline{u}}=\log (P_U^*),\quad \text {and}\quad {\overline{v}}=\log (P_D^*). $$

Any point (u,v) on the grid is such that

$$ u\in {{\mathcal {N}}}^h_u:=\{{\underline{u}},{\underline{u}}+h,\ldots ,{\overline{u}}-h,{\overline{u}}\},\quad \text {and} \quad v\in {{\mathcal {N}}}^h_v:=\{{\underline{v}},{\underline{v}}+h,\ldots ,{\overline{v}}-h,{\overline{v}}\}. $$

Introducing, for each \(a\in {\mathbb{R}}\), the notation \(a^+:=\max \{0,a\}\) and \(a^-:=\max \{-a,0\}\), the approximating Markov chain on the grid has the following transition probabilities on \({{\mathcal {N}}}^h_u\times {{\mathcal {N}}}^h_v\):

$$\begin{aligned} p^h(u\pm h,v|u,v)&= \frac{(\sigma _1^2-|\rho |\sigma _1\sigma _2)/2 +h\left( \alpha _1-\sigma _1^2/2\right) ^+}{Q^h(u,v)},\\ p^h(u,v\pm h|u,v)&= \frac{(\sigma _2^2-|\rho |\sigma _1\sigma _2)/2 +h\left( \alpha _2-\sigma _2^2/2\right) ^+}{Q^h(u,v)},\\ p^h(u+h,v+h|u,v)&= p^h(u-h,v-h|u,v) = \frac{\rho ^+\sigma _1\sigma _2}{2Q^h(u,v)},\\ p^h(u+h,v-h|u,v)&= p^h(u-h,v+h|u,v) = \frac{\rho ^-\sigma _1\sigma _2}{2Q^h(u,v)}, \end{aligned}$$

where

$$ Q^h(u,v)= \sigma _1^2+\sigma _2^2-|\rho |\sigma _1\sigma _2+ \left| \alpha _1-\tfrac{1}{2}\sigma _1^2\right| h +\left| \alpha _2-\tfrac{1}{2}\sigma _2^2\right| h. $$

Note that the transition probabilities are non-negative if \(\rho =0\) or if

$$ |\rho |<\frac{\sigma _1}{\sigma _2}<|\rho |^{-1},\quad \text {when }\rho \ne 0. $$

Given a grid \({{\mathcal {N}}}_u^h\times {{\mathcal {N}}}_v^h\), our time disretization is chosen such that our discrete-time Markov chain approximation of (14) (to be defined below) converges (weakly) to (14). It turns out (see, e.g., Kushner and Dupuis 2001) that a sequence of time points with (potentially state-dependent) time intervals of length

$$ \Delta t^h(u,v) := h^2/Q^h(u,v), $$

achieves this.

From Proposition 2 we know that the solution to (14) should satisfy the Hamilton–Jacobi–Bellman (HJB) equation

$$ {\hat{V}}(u,v) = \max \left\{ {\hat{F}}(u,v),{{\mathscr {L}}}{\hat{V}}(u,v)+(1-r){\hat{V}}(u,v)-{\hat{c}}(u)\right\} , $$
(15)

here written as a fixed-point equation, where \({{\mathscr {L}}}\) is the characteristic operator of (U,V), i.e.

$$ {{\mathscr {L}}}\varphi := \frac{1}{2}\sigma _1^2\varphi ''_{11}+\frac{1}{2}\sigma _2^2\varphi ''_{22} +\rho \sigma _1\sigma _2\varphi ''_{12}+(\alpha _1-\sigma _1^2/2)\varphi '_1 +(\alpha _2-\sigma _2^2/2)\varphi '_2. $$

Using the transition probabilities of our Markov chain approximation we can discretize the characteristic operator for functions \(\varphi ^h\) defined on the grid \({{\mathcal {N}}}_u^h\times {{\mathcal {N}}}_v^h\):

$$\begin{aligned}{\hat{{{\mathscr {L}}}}}^h\varphi ^h(u,v)&:= p(u+h,v|u,v)\varphi ^h(u+h,v)+p(u,v+h|u,v)\varphi ^h(u,v+h)\\ &\quad+\,p(u-h,v|u,v)\varphi ^h(u-h,v) +p(u,v-h|u,v)\varphi ^h(u,v-h)\\ &\quad +\,1_{\rho \ge 0}\left[ p(u+h,v+h|u,v)\varphi ^h(u+h,v+h)+p(u-h,v-h|u,v)\varphi ^h(u-h,v-h)\right] \\ &\quad +\,1_{\rho < 0}\left[ p(u+h,v-h|u,v)\varphi ^h(u+h,v-h)+p(u-h,v+h|u,v)\varphi ^h(u-h,v+h)\right] . \end{aligned}$$

We now replace the HJB equation (15) by the discrete-time approximation

$$ W^h(u,v)= (TW^h)(u,v), $$
(16)

where the operator T is given by

$$ (TW^h)(u,v):=\max \left\{ {\hat{F}}^h(u,v),(1-r\Delta t^h(u,v)){{\mathscr {L}}}^hW^h(u,v)-c(u)\Delta t^h(u,v)\right\} . $$

Using Blackwell’s theorem (Aliprantis and Border 2006, Theorem 3.53), it is fairly easy to show that the operator T is a contraction mapping. From the Banach fixed point theorem (Aliprantis and Border 2006, Theorem 3.48) it follows that the fixed-point problem (16) has a unique fixed point. In addition, repeated application of T leads to convergence to the fixed point \(W^h\), which then acts as our approximation to the value function V.

To summarize, we start with an initial guess \(W^h_0\) on the grid \({{\mathcal {N}}}^h_u\times {{\mathcal {N}}}^h_v\). From this initial guess we extract an initial guess of the continuation region, \(G_0\), by extracting all points \((u,v)\in {{\mathcal {N}}}^h_u\times {{\mathcal {N}}}^h_v\) for which \(W_0^h(u,v)>{\hat{F}}(u,v)\). We then compute a new iteration, \(W_1^h\) by applying the operator T, i.e.

$$ W^h_1 := TW^h_0. $$

This procedure is repeated until the change between \(W^h_n\) and \(W^h_{n-1}\) (in the sup norm) falls below 1. That is, our final approximation is to the nearest $1,000.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Compernolle, T., Thijssen, J.J.J. The Role of Industrial and Market Symbiosis in Stimulating CO2 Emission Reductions. Environ Resource Econ 83, 171–197 (2022). https://doi.org/10.1007/s10640-021-00616-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-021-00616-3

Keywords

Navigation