Skip to main content
Log in

Leadership and Free-Riding: Decomposing and Explaining the Paradox of Cooperation in International Environmental Agreements

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

This paper decomposes the canonical model of International Environmental Agreements (Barrett in Oxf Econ Pap 46:878–894, 1994) into three effects: externality, cost-effectiveness and timing. The externality and timing effects are countervailing forces on abatement levels of greenhouse gases. The Paradox of Cooperation in the three-stage Stackelberg game is explained by showing that when the gains to cooperation are small the timing effect dominates the externality effect and large coalitions are stable. The timing effect has the greatest impact when the high benefit nations have low abatement cost. The cost-effectiveness effect arises from asymmetry and generates the need for an agreement with transfers. The cost-effectiveness effect is largest when the high benefit nations are high cost. This creates a larger difference in the marginal abatement cost of the last unit of abatement in the absence of an agreement. Numerical examples illustrate how the parameters and effects interact to result in outcomes ranging from no to full participation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In Barrett (1994) the aggregate payoff function is monotonic in global abatement, hence one can interpret the paradox in terms of both abatement and payoff gains, as in his Tables 3 and 4.

  2. The timing effect on signatory and non-signatory abatement can be seen in Table 1 of Barrett (1994), where the first three signatories reduce abatement relative to the non-cooperative outcome.

  3. Other research has considered violations of collective rationality and more modest abatement by the agreement in order to increase participation (Finus and Maus 2008; Bakalova and Eyckmans 2019).

  4. For more details about the symmetric Stackelberg results see Barrett (1994) and for the asymmetric results see McGinty (2007).

  5. Note that if \(s=n=1\), then there is no public goods problem and all three effects are zero. Specifically, if \(s=n=1\), then \(q_{i}^{ne}=q_{i}^{o}=q_{i}^{l}=q_{i}^{f}=Q^{ne}=Q^{o}=\frac{a}{1+\gamma }\).

  6. Section 4 identifies the timing effect by comparing asymmetric Cournot and Stackelberg coalitions with the same members.

  7. There is a vast Industrial Organization (IO) literature on leadership but, to the best of my knowledge, there is never a situation where \(q_{i}^{l}=q_{i}^{f}\) with ex ante identical profit maximizing firms. In these IO models the timing effect is positive and the externality effect is negative, opposite signs from the public goods model in this paper. In IO models leaders exploit their timing advantage by increasing market share (a positive timing effect) and this lowers the market price on all other firms (a negative externality). In standard IO models of symmetric profit maximizing firms leadership always implies greater output and market share \(q_{i}^{l}>q_{i}^{f}\). Long and Flaaten (2011) find in a fisheries model that a resource conservation coalition harvests more as a Stackelberg leader since the externality effect is negative.

  8. The asymmetric Cournot coalition abatement solutions were first published on p. 24 of my Ph.D. dissertation in 2002 (https://cpb-us-w2.wpmucdn.com/people.uwm.edu/dist/5/258/files/2019/08/Dissertation.pdf) and also appear in Caparrós and Péreau (2017).

  9. When all nations are signatories the solution in (34) is the social optimum in (8), \(Q^{o}=\frac{ab\sum \nolimits _{i\in N}\frac{ 1}{ci}}{1+b\sum \nolimits _{i\in N}\frac{1}{ci}}\). When all nations are non-signatories, or when there is a singleton Nash coalition, the solution in (34) is the Nash equilibrium in (7), \(Q^{ne}= \frac{ab\sum \nolimits _{i\in N}\theta _{i}}{1+b\sum \nolimits _{i\in N}\theta _{i}}\) since \(\sum \nolimits _{i\in S}\frac{1}{ci}\sum \nolimits _{i\in S}\alpha _{i}=\theta _{j}\) when j is the only signatory.

  10. The stability conditions are written in terms of Cournot coalitions and are identical for Stackelberg coalitions with \(S^{L}\) replacing S.

References

  • Altamirano-Cabrera JC, Finus M (2006) Permit trading and stability of international climate agreements. J Appl Econ 9:19–48

    Google Scholar 

  • Ansink E, Weikard H-P, Withagen C (2018) International environmental agreements with support. J Environ Econ Manag 97:241–252

    Google Scholar 

  • Bakalova I, Eyckmans J (2019) Simulating the impact of heterogeneity on stability and effectiveness of international environmental agreements. Eur J Oper Res 277(3):1151–1162

    Google Scholar 

  • Barrett S (1994) Self-enforcing international environmental agreements. Oxf Econ Pap 46:878–894

    Google Scholar 

  • Barrett S (2001) International cooperation for sale. Eur Econ Rev 45:1835–1850

    Google Scholar 

  • Barrett S (2003) Environment and statecraft: the strategy of environmental treaty-making. Oxford University Press, Oxford

    Google Scholar 

  • Benchekroun H, Long NV (2012) Collaborative environmental management: a review of the literature. Int Game Theory Rev 14(4):1–22

    Google Scholar 

  • Bosetti V, Carraro C, De Cian E, Massetti E, Tavoni M (2013) Incentives and stability of international climate coalitions: an integrated assessment. Energy Policy 55:44–56

    Google Scholar 

  • Caparrós A (2016) Bargaining and international environmental agreements. Environ Resour Econ 65:5–31

    Google Scholar 

  • Caparrós A, Péreau J-C (2017) Multilateral versus sequential negotiations over climate change. Oxf Econ Pap 69(2):365–387

    Google Scholar 

  • Carraro C, Siniscalco D (1993) Strategies for the international protection of the environment. J Public Econ 52:309–28

    Google Scholar 

  • Cramton P, Stoft S (2012) Global climate games: how pricing and a green fund foster cooperation. Econ Energy Environ Policy 1(2):125–136

    Google Scholar 

  • d’Aspremont C, Jacquemin A, Gabszewicz JJ, Weymark J (1983) On the stability of collusive price leadership. Can J Econ 16:17–25

    Google Scholar 

  • Diamantoudi E, Sartzetakis E (2015) International environmental agreements: coordinated action under foresight. Econ Theory 59:527–546

    Google Scholar 

  • Diamantoudi E, Sartzetakis E, Strantza S (2018) International environmental agreements-stability with transfers among countries. FEEM working paper 2018.020

  • Eichner T, Pethig R (2015) Self-enforcing international environmental agreements and trade: taxes versus caps. Oxf Econ Pap 67:897–917

    Google Scholar 

  • Eyckmans J (1997) Nash implementation of a proportional solution to international pollution control problems. J Environ Econ Manag 33:314–330

    Google Scholar 

  • Finus M (2001) Game theory and international environmental cooperation. Edward Elgar, Cheltenham

    Google Scholar 

  • Finus M (2003) Stability and design of international environmental agreements: the case of transboundary pollution. In: Folmer H, Tietenberg T (eds) International yearbook of environmental and resource economics, 2003/4. Edward Elgar, Cheltenham, pp 82–158

    Google Scholar 

  • Finus M, Maus S (2008) Modesty may pay. J Public Econ Theory 10(5):801–826

    Google Scholar 

  • Finus M, McGinty M (2019) The anti-paradox of cooperation: Diversity may pay!. J Econ Behav Organ 157:541–559

    Google Scholar 

  • Finus M, Rundshagen B (2003) Endogenous coalition formation in global pollution control: a partition function approach. In: Carraro C (ed) Endogenous formation of economic coalitions. Edward Elgar, Cheltenham, pp 199–243

    Google Scholar 

  • Fuentes-Albero C, Rubio SJ (2010) Can international environmental cooperation be bought? Eur J Oper Res 202:255–264

    Google Scholar 

  • Gelves A, McGinty M (2016) International environmental agreements with consistent conjectures. J Environ Econ Manag 78:67–84

    Google Scholar 

  • Harstad B (2012) Climate contracts: a game of emissions, investments, negotiations, and renegotiations. Rev Econ Stud 79:1527–1557

    Google Scholar 

  • Helland L, Hovi J, Saelen H (2018) Climate leadership by conditional commitments. Oxf Econ Pap 70(2):417–442

    Google Scholar 

  • Heyen D, Tavoni A (2018) Free-riders and free-drivers: non-cooperative public goods provision by heterogenous agents. Working paper presented at WCERE 2018

  • Hoel M (1991) Global environmental problems: the effects of unilateral actions taken by one country. J Environ Econ Manag 20:55–70

    Google Scholar 

  • Karp L, Simon L (2013) Participation games and international environmental agreements: a nonparametric model. J Environ Econ Manag 65(2):326–344

    Google Scholar 

  • Li H, Rus H (2019) Climate change adaptation and international mitigation agreements with heterogeneous countries. J Assoc Environ Resour Econom 6(3):503–530

    Google Scholar 

  • Long L, Flaaten O (2011) A Stackelberg analysis of the potential for cooperation in straddling stock fisheries. Mar Resour Econ 26:119–139

    Google Scholar 

  • McGinty M (2007) International environmental agreements among asymmetric nations. Oxf Econ Pap 59(1):45–62

    Google Scholar 

  • McGinty M (2011) A risk-dominant allocation: maximizing coalition stability. J Public Econ Theory 13(2):311–325

    Google Scholar 

  • Nordhaus W (2015) Climate clubs: overcoming free-riding in international climate policy. Am Econ Rev 105(4):1339–1370

    Google Scholar 

  • Pavlova Y, de Zeeuw A (2013) Asymmetries in international environmental agreements. Environ Dev Econ 18:51–68

    Google Scholar 

  • Wagner U (2001) The design of stable international environmental agreements: economic theory and political economy. J Econom Surv 15(3):377–411

    Google Scholar 

  • Weikard HP (2009) Cartel stability under optimal sharing rule. Manch. Sch. 77(5):575–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McGinty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix


A1: This appendix reproduces the asymmetric Stackelberg coalition results from McGinty (2007) to compare with the new results.

The Stackelberg equilibrium signatory abatement from McGinty (2007) is

$$\begin{aligned} Q^{L}(S^{L}) & = \frac{ab\sum \nolimits _{i\in S}\frac{1}{c_{i}}\sum \nolimits _{i\in S}\alpha _{i}}{\left[ 1+b\sum \nolimits _{j\in T}\theta _{j} \right] ^{2}+b\sum \nolimits _{i\in S}\frac{1}{c_{i}}\sum \nolimits _{i\in S}\alpha _{i}} \nonumber \\ q_{i}^{l}(S^{L}) & = \frac{ab\sum \nolimits _{j\in S}\alpha _{j}}{c_{i}\left[ \left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) ^{2}+b\sum \nolimits _{j\in S} \frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j}\right] } . \end{aligned}$$
(38)

The non-signatory level of abatement is

$$\begin{aligned} Q^{F}(S^{L}) & = \frac{ab\sum \nolimits _{j\in T}\theta _{j}\left[ 1+b\sum \nolimits _{j\in T}\theta _{j}\right] }{\left[ 1+b\sum \nolimits _{j\in T}\theta _{j}\right] ^{2}+b\sum \nolimits _{i\in S}\frac{1}{c_{i}}\sum \nolimits _{i\in S}\alpha _{i}} \nonumber \\ q_{i}^{f}(S^{L}) & = \frac{ab\alpha _{i}\left[ 1+b\sum \nolimits _{j\in T}\theta _{j}\right] }{c_{i}\left[ \left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) ^{2}+b\sum \nolimits _{j\in S}\frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j} \right] } . \end{aligned}$$
(39)

The global quantity of Stackelberg abatement is \(Q(S^{L})=Q^{L}(S^{L})+Q^{F}(S^{L})\).

$$\begin{aligned} Q(S^{L})=\frac{ab\left[ \sum \nolimits _{j\in T}\theta _{j}\left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) +\sum \nolimits _{i\in S}\frac{1}{c_{i}}\sum \nolimits _{i\in S}\alpha _{i}\right] }{\left[ 1+b\sum \nolimits _{j\in T}\theta _{j}\right] ^{2}+b\sum \nolimits _{i\in S}\frac{1}{c_{i}}\sum \nolimits _{i\in S}\alpha _{i}} \end{aligned}$$
(40)

A2: Proofs

Proposition 1

With non-trivial \((s>1)\) Cournot coalitions of symmetric nations, joining the IEA always means increasing abatement, i.e., the externality effect is strictly positive.

Proof

A non-signatory outside of an agreement with \(s-1\) signatories abates \(q_{i}^{t}(s-1)\) from (20). After joining the agreement there are s members each of which abates \(q_{i}^{s}(s)\) from (19).

$$\begin{aligned} q_{i}^{s}(s)-q_{i}^{t}(s-1) & = \frac{as}{n\gamma +n-s+s^{2}}-\frac{a}{ n\gamma +n-(s-1)+(s-1)^{2}} \nonumber \\ & = \frac{as\left[ n\gamma +n-(s-1)+(s-1)^{2}\right] -a\left[ n\gamma +n-s+s^{2}\right] }{\left[ n\gamma +n-(s-1)+(s-1)^{2}\right] \left[ n\gamma +n-s+s^{2}\right] } \nonumber \\ & = \frac{a\left\{ s\left[ n\gamma +n-(s-1)+(s-1)^{2}\right] -\left[ n\gamma +n-s+s^{2}\right] \right\} }{\Delta _{1}} \nonumber \\ & = \frac{a\left\{ (s-1)\left( n\gamma +n\right) +s\left[ -(s-1)+(s-1)^{2}+1-s\right] \right\} }{\Delta _{1}} \nonumber \\ & = \frac{a\left\{ n(s-1)\left( \gamma +1\right) +s\left[ s^{2}-2s+1-2s+2 \right] \right\} }{\Delta _{1}} \nonumber \\ & = \frac{a\left\{ n(s-1)\left( \gamma +1\right) +s\left[ s^{2}-4s+3\right] \right\} }{\Delta _{1}}>0\text { for all} \, s>1 \end{aligned}$$
(41)

where the denominator \(\Delta _{1}\equiv\)\(\left[ n\gamma +n-(s-1)+(s-1)^{2} \right] \left[ n\gamma +n-s+s^{2}\right]\) is positive for all \(n\ge s\ge 1\). \(\square\)

Proposition 2

The timing effect in Stackelberg coalitions implies that a single signatory exploits the leadership advantage by (i) reducing abatement relative to the Nash equilibrium, which (ii) induces followers to increase abatement relative to the Nash equilibrium.

Proof

(i) Using (12), the definition \(\gamma \equiv \frac{c}{ b}\) and (24), \(q^{ne}-q_{|_{s=1}}^{l}\) is

$$\begin{aligned} q^{ne}-q_{|_{s=1}}^{l} & = \frac{ab}{n\left( b+c\right) }-\frac{abcn}{\left[ cn+b(n-1)\right] ^{2}+bcn} \nonumber \\ & = ab\left[ \frac{1}{n\left( b+c\right) } -\frac{cn}{\left[ cn+b(n-1)\right] ^{2}+bcn}\right] \nonumber \\ & = \frac{ab}{\Delta _{2}}\left[ \left[ cn+b(n-1)\right] ^{2}+bcn-cn^{2} \left( b+c\right) \right] \nonumber \\ & = \frac{ab}{\Delta _{2}}\left[ c^{2}n^{2}+2bcn(n-1)+b^{2}(n-1)^{2}+bcn-bcn^{2}-c^{2}n^{2}\right] \nonumber \\ & = \frac{ab}{\Delta _{2}}\left[ 2bcn^{2}-bcn+b^{2}(n-1)^{2}-bcn^{2}\right] \nonumber \\ & = \frac{ab^{2}}{\Delta _{2}}\left[ cn^{2}-cn+b(n-1)^{2}\right] \nonumber \\ & = \frac{ab^{2}}{\Delta _{2}}\left[ cn(n-1)+b(n-1)^{2}\right] \nonumber \\ & = \frac{ab^{2}(n-1)}{\Delta _{2}}\left[ cn+b(n-1)\right]>0\text { for all} \, n>1 \end{aligned}$$
(42)

where \(\Delta _{2}\equiv n\left( b+c\right) \left[ \left[ cn+b(n-1)\right] ^{2}+bcn\right] >0\) for all \(n>1\).

Then (ii), using (12) with \(\gamma \equiv \frac{c}{b}\) and (24), evaluating \(q_{|_{s=1}}^{f}-q^{ne}\) results in

$$\begin{aligned}&q_{|_{s=1}}^{f}-q^{ne} \nonumber \\&\quad =\frac{ab\left[ cn+b(n-1)\right] }{\left[ cn+b(n-1) \right] ^{2}+bcn}-\frac{ab}{n\left( b+c\right) } \nonumber \\&\quad =ab\left[ \frac{cn+b(n-1)}{\left[ cn+b(n-1)\right] ^{2}+bcn}-\frac{1}{ n\left( b+c\right) } \right] \nonumber \\&\quad =\frac{ab}{\Delta _{2}}\left[ n\left( b+c\right) \left[ cn+b(n-1)\right] - \left[ cn+b(n-1)\right] ^{2}-bcn\right] \nonumber \\&\quad =\frac{ab}{\Delta _{2}}\left[ bcn^{2}+c^{2}n^{2}+b^{2}n(n-1)+bcn(n-1)-c^{2}n^{2}-2bcn(n-1)-b^{2}(n-1)^{2}-bcn \right] \nonumber \\&\quad =\frac{ab}{\Delta _{2}}\left[ bcn^{2}+b^{2}n(n-1)+bcn(n-1)-2bcn(n-1)-b^{2}(n-1)^{2}-bcn\right] \nonumber \\&\quad =\frac{ab}{\Delta _{2}}\left[ b^{2}n(n-1)-bcn+2bcn-b^{2}(n-1)^{2}-bcn \right] \nonumber \\&\quad =\frac{ab}{\Delta _{2}}\left[ b^{2}n(n-1)-b^{2}(n-1)^{2}\right] \nonumber \\&\quad =\frac{ab^{3}(n-1)}{\Delta _{2}}\left[ n-n+1\right] \nonumber \\&\quad =\frac{ab^{3}(n-1)}{\Delta _{2}}>0\text { for all} \, n>1. \end{aligned}$$
(43)

\(\square\)

Proposition 3

The timing and externality effects exactly offset when \(s={\hat{s}}\). When \(s<{\hat{s}}\)the timing effect dominates and when \(s>{\hat{s}}\)the externality effect dominates, i.e., for all coalitions with s members (i) \(Q(S^{L})\lesseqqgtr Q^{ne}\)(ii) \(q^{f}\gtreqless q^{ne}\)(iii) \(q^{l}\lesseqgtr q^{ne}\)if and only if \(s\lesseqgtr {\hat{s}}\).

Proof

Proof of (i) \(Q(S^{L})\lesseqqgtr Q^{ne}\) if and only if \(s\lesseqgtr \hat{s}\). Using (23) and (12) with \(\gamma \equiv \frac{c}{b}\).

$$\begin{aligned}&Q^{ne}-Q(S^{L}) \nonumber \\&\quad =\frac{ab}{b+c}-\frac{ab\left[ cn\left( s^{2}+n-s\right) +b(n-s)^{2}\right] }{\left[ cn+b(n-s)\right] ^{2}+bcns^{2}} \nonumber \\&\quad =\frac{ab}{\Delta _{3}}\left[ \left[ cn+b(n-s)\right] ^{2}+bcns^{2}-\left( b+c\right) \left[ cn\left( s^{2}+n-s\right) +b(n-s)^{2}\right] \right] \nonumber \\&\quad =\frac{ab}{\Delta _{3}}\left[ \begin{array}{c} c^{2}n^{2}+2bcn(n-s)+b^{2}(n-s)^{2}+bcns^{2} \\ -\left( b+c\right) \left[ cn\left( s^{2}+n-s\right) +b(n-s)^{2}\right] \end{array} \right] \nonumber \\&\quad =\frac{ab}{\Delta _{3}}\left[ \begin{array}{c} c^{2}n^{2}+2bcn(n-s)+b^{2}(n-s)^{2}+bcns^{2}-bcn\left( s^{2}+n-s\right) -b^{2}(n-s)^{2} \\ -c^{2}n\left( s^{2}+n-s\right) -bc(n-s)^{2} \end{array} \right] \nonumber \\&\quad =\frac{ab}{\Delta _{3}}\left[ 2bcn(n-s)+bcns^{2}-bcn\left( s^{2}+n-s\right) -c^{2}n\left( s^{2}-s\right) -bc(n-s)^{2}\right] \nonumber \\&\quad =\frac{ab}{\Delta _{3}}\left[ 2bcn(n-s)-bcn\left( n-s\right) -c^{2}ns\left( s-1\right) -bc(n^{2}-2ns+s^{2})\right] \nonumber \\&\quad =\frac{abc}{\Delta _{3}}\left[ bn(n-s)-cns\left( s-1\right) -b(n^{2}-2ns+s^{2})\right] \nonumber \\&\quad =\frac{abc}{\Delta _{3}}\left[ -bns-cns^{2}+cns+2bns-bs^{2}\right] \nonumber \\&\quad =\frac{abcs}{\Delta _{3}}\left[ -cns+cn+bn-bs\right] \nonumber \\&\quad =\frac{abcs}{\Delta _{3}}\left[ -s(b+cn)+n(b+c)\right] \gtreqqless 0\Longleftrightarrow s\lesseqgtr {\hat{s}}=\frac{n(b+c)}{b+cn}=\frac{ n(1+\gamma )}{n\gamma +1} \end{aligned}$$
(44)

where \(\Delta _{3}\equiv \left( b+c\right) \left[ \left[ cn+b(n-s)\right] ^{2}+bcns^{2}\right] >0\).

Proof of (ii) \(q^{f}\gtreqless q^{ne}\) if and only if \(s\lesseqgtr {\hat{s}}\) using (22) and (12).

$$\begin{aligned} q^{f}-q^{ne} & = \frac{ab\left[ cn+b(n-s)\right] }{\left[ cn+b(n-s)\right] ^{2}+bcns^{2}}-\frac{ab}{n(b+c)} \nonumber \\ & = \frac{ab}{n\Delta _{3}}\left[ n(b+c)\left[ cn+b(n-s)\right] -\left[ cn+b(n-s)\right] ^{2}-bcns^{2}\right] \nonumber \\ & = \frac{ab}{n\Delta _{3}}\left[ \begin{array}{c} bcn^{2}+c^{2}n^{2}+b^{2}n(n-s)+bcn(n-s) \\ -c^{2}n^{2}-2bcn(n-s)-b^{2}(n-s)^{2}-bcns^{2} \end{array} \right] \nonumber \\ & = \frac{ab}{n\Delta _{3}}\left[ bcn^{2}+b^{2}n^{2}-b^{2}ns-bcn(n-s)-b^{2}(n-s)^{2}-bcns^{2}\right] \nonumber \\ & = \frac{ab^{2}}{n\Delta _{3}}\left[ cn^{2}+bn^{2}-bns-cn^{2}+cns-b(n^{2}-2ns+s^{2})-cns^{2}\right] \nonumber \\ & = \frac{ab^{2}}{n\Delta _{3}}\left[ -bns+cns-b(-2ns+s^{2})-cns^{2}\right] \nonumber \\ & = \frac{ab^{2}}{n\Delta _{3}}\left[ -cns(s-1)+b(ns-s^{2})\right] \nonumber \\ & = \frac{ab^{2}s}{n\Delta _{3}}\left[ -cn(s-1)+b(n-s)\right] \nonumber \\ & = \frac{ab^{2}s}{n\Delta _{3}}\left[ -s(cn+b)+n(b+c)\right] \gtreqqless 0\Longleftrightarrow \nonumber \\ s\lesseqgtr {\hat{s}} & = \frac{n(b+c)}{b+cn} =\frac{ n(1+\gamma )}{n\gamma +1}. \end{aligned}$$
(45)

Proof of (iii) \(q^{l}\lesseqgtr q^{ne}\) if and only if \(s\lesseqgtr {\hat{s}}\) .

This follows directly from (i) and (ii). If \(Q(S^{L})\lesseqqgtr Q^{ne}\) and \(q^{f}\gtreqless q^{ne}\) if and only if \(s\lesseqgtr {\hat{s}}\) then \(q^{l}\lesseqgtr q^{ne}\) when \(s\lesseqgtr {\hat{s}}\).

$$\begin{aligned} q^{l} & = q^{f} \nonumber \\ \frac{abcns}{\left[ cn+b(n-s)\right] ^{2}+bcns^{2}} & = \frac{ab\left[ cn+b(n-s)\right] }{\left[ cn+b(n-s)\right] ^{2}+bcns^{2}} \nonumber \\ cns & = cn+b(n-s) \nonumber \\ s(b+cn) & = n(b+c) \nonumber \\ {\hat{s}} & = \frac{n(b+c)}{b+cn}<n\,\,{\text {for}}\,\, n>1 \end{aligned}$$
(46)

Of course if \(q^{l}=q^{f}\) then they must both equal \(q^{ne}\) since this is where the positive externality effect and the negative timing effect exactly offset. It is easily verified that \(q^{l}({\hat{s}})=q^{f}({\hat{s}})=q^{ne}\). \(\square\)

Proposition 4

For all possible subcoalitions (i.e., partial participation) with \(1\le s<n\)members Cournot coalitions compared to Stackelberg coalitions result in (i) higher global abatement, \(Q(S)>Q(S^{L})\), (ii) higher signatory abatement \(q_{i}^{s}(S)>q_{i}^{l}(S^{L})\), and (iii) lower non-signatory abatement, \(q_{i}^{t}(S)<q_{i}^{f}(S^{L})\).

Proof

For a given set of coalition members, \(S=S^{L}\), and (i) using (34) and (40),

$$\begin{aligned}&Q(S)-Q(S^{L}) \nonumber \\&\quad =\frac{ab\left( \sum \nolimits _{j\in T}\theta _{j}+\sum \nolimits _{i\in S}\frac{1}{ci}\sum \nolimits _{i\in S}\alpha _{i}\right) }{ 1+b\left( \sum \nolimits _{j\in T}\theta _{j}+\sum \nolimits _{i\in S}\frac{1}{ci} \sum \nolimits _{i\in S}\alpha _{i}\right) } -\frac{ab\left[ \sum \nolimits _{j\in T}\theta _{j}\left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) +\sum \nolimits _{i\in S}\frac{1}{c_{i}}\sum \nolimits _{i\in S}\alpha _{i}\right] }{ \left[ 1+b\sum \nolimits _{j\in T}\theta _{j}\right] ^{2}+b\sum \nolimits _{i\in S} \frac{1}{c_{i}}\sum \nolimits _{i\in S}\alpha _{i}} \nonumber \\&\quad =\frac{ab}{\Delta _{4}}\left[ \begin{array}{l} \sum \limits _{j\in T}\theta _{j}\left[ 1+b\sum \limits _{j\in T}\theta _{j} \right] ^{2}+b\sum \limits _{j\in T}\theta _{j}\sum \limits _{i\in S}\frac{1}{ ci}\sum \limits _{i\in S}\alpha _{i} \\ +\left[ 1+b\sum \limits _{j\in T}\theta _{j}\right] ^{2}\sum \limits _{i\in S} \frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}+b\left( \sum \limits _{i\in S} \frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}\right) ^{2} \\ -\sum \limits _{j\in T}\theta _{j}\left( 1+b\sum \limits _{j\in T}\theta _{j}\right) -\sum \limits _{i\in S}\frac{1}{ci}\sum \limits _{i\in S}\alpha _{i}-b\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}\left( 1+b\sum \limits _{j\in T}\theta _{j}\right) \\ -b\sum \limits _{j\in T}\theta _{j}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}-b\sum \limits _{j\in T}\theta _{j}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}\left( 1+b\sum \limits _{j\in T}\theta _{j}\right) \\ -b\left( \sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}\right) ^{2} \end{array} \right] \nonumber \\&\quad =\frac{ab}{\Delta _{4}}\left[ \begin{array}{l} \sum \limits _{j\in T}\theta _{j}\left[ 1+b\sum \limits _{j\in T}\theta _{j} \right] ^{2}+\left[ 1+b\sum \limits _{j\in T}\theta _{j}\right] ^{2}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i} \\ -\sum \limits _{j\in T}\theta _{j}\left( 1+b\sum \limits _{j\in T}\theta _{j}\right) -\sum \limits _{i\in S}\frac{1}{ci}\sum \limits _{i\in S}\alpha _{i}-b\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}\left( 1+b\sum \limits _{j\in T}\theta _{j}\right) \\ -b\sum \limits _{j\in T}\theta _{j}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}\left( 1+b\sum \limits _{j\in T}\theta _{j}\right) \end{array} \right] \nonumber \\&\quad =\frac{ab}{\Delta _{4}}\left[ \begin{array}{l} \left[ 1+2b\sum \limits _{j\in T}\theta _{j}+b^{2}\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}\right] \left( \sum \limits _{j\in T}\theta _{j}+\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}\right) \\ -\sum \limits _{j\in T}\theta _{j}-b\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}-\sum \limits _{i\in S}\frac{1}{ci}\sum \limits _{i\in S}\alpha _{i}-b\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}-b^{2}\left( \sum \limits _{j\in T}\theta _{j}\right) ^{3} \\ -b\sum \limits _{j\in T}\theta _{j}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}-b^{2}\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i} \end{array} \right] \nonumber \\&\quad =\frac{ab}{\Delta _{4}}\left[ \begin{array}{l} \sum \limits _{j\in T}\theta _{j}+\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}+2b\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}+2b\sum \limits _{j\in T}\theta _{j}\sum \limits _{i\in S}\frac{1}{c_{i}} \sum \limits _{i\in S}\alpha _{i} \\ +b^{2}\left( \sum \limits _{j\in T}\theta _{j}\right) ^{3}+b^{2}\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}\sum \limits _{i\in S}\frac{1}{c_{i}} \sum \limits _{i\in S}\alpha _{i} \\ -\sum \limits _{j\in T}\theta _{j}-b\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}-\sum \limits _{i\in S}\frac{1}{ci}\sum \limits _{i\in S}\alpha _{i}-b\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}-b^{2}\left( \sum \limits _{j\in T}\theta _{j}\right) ^{3} \\ -b\sum \limits _{j\in T}\theta _{j}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}-b^{2}\left( \sum \limits _{j\in T}\theta _{j}\right) ^{2}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i} \end{array} \right] \nonumber \\&\quad =\frac{ab}{\Delta _{4}}\left[ b\sum \limits _{j\in T}\theta _{j}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}\right] \nonumber \\&\quad =\frac{ab^{2}}{\Delta _{4}}\left[ \sum \limits _{j\in T}\theta _{j}\sum \limits _{i\in S}\frac{1}{c_{i}}\sum \limits _{i\in S}\alpha _{i}\right] >0 \end{aligned}$$
(47)

where \(\Delta _{4}\equiv \left[ 1+b\left( \sum \nolimits _{i\in T}\theta _{i}+\sum \nolimits _{i\in S}\frac{1}{c_{i}}\sum \nolimits _{i\in S}\alpha _{i}\right) \right] \left\{ \left[ 1+b\sum \nolimits _{i\in T}\theta _{i} \right] ^{2}+b\sum \nolimits _{i\in S}\frac{1}{c_{i}}\sum \nolimits _{i\in S}\alpha _{i}\right\} >0\).

(ii) Using (32) and (38) \(q_{i}^{s}(S)-q_{i}^{l}(S^{L})>0\) since

$$\begin{aligned} q_{i}^{s}(S) & = \frac{ab\sum \nolimits _{j\in S}\alpha _{j}}{c_{i}\left[ 1+b\left( \sum \nolimits _{j\in T}\theta _{j}+\sum \nolimits _{j\in S}\frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j}\right) \right] }\text { and} \nonumber \\ q_{i}^{l}(S^{L}) & = \frac{ab\sum \nolimits _{j\in S}\alpha _{j}}{c_{i}\left[ \left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) ^{2}+b\sum \nolimits _{j\in S}\frac{1}{c_{j}} \sum \nolimits _{j\in S}\alpha _{j}\right] } . \end{aligned}$$
(48)

The numerators are identical and the denominator of \(q_{i}^{l}(S^{L})\) is greater since \(\left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) ^{2}>\)\(1+b\sum \nolimits _{j\in T}\theta _{j}\) for \(\left| T\right| >0\).

(iii) Using (33) and (39) \(\frac{q_{i}^{t}(S)}{q_{i}^{f}(S^{L})}\) is

$$\begin{aligned}&\frac{q_{i}^{t}(S)}{q_{i}^{f}(S^{L})} \nonumber \\&\quad = \frac{\left( \frac{ab\alpha _{i}}{c_{i}\left[ 1+b\left( \sum \nolimits _{j\in T}\theta _{j}+\sum \nolimits _{j\in S}\frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j}\right) \right] } \right) }{\left( \frac{ab\alpha _{i}\left[ 1+b\sum \nolimits _{j\in T}\theta _{j}\right] }{c_{i}\left[ \left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) ^{2}+b\sum \nolimits _{j\in S}\frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j}\right] } \right) } \nonumber \\&\quad = \frac{\left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) ^{2}+b\sum \nolimits _{j\in S}\frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j}}{\left[ 1+b\sum \nolimits _{j\in T}\theta _{j}\right] \left[ 1+b\left( \sum \nolimits _{j\in T} \theta _{j}+\sum \nolimits _{j\in S}\frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j}\right) \right] } \nonumber \\&\quad = \frac{\left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) ^{2}+b\sum \nolimits _{j\in S}\frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j}}{\left( 1+b\sum \nolimits _{j\in T}\theta _{j}\right) ^{2}+b\sum \nolimits _{j\in S}\frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j}+b^{2}\sum \nolimits _{j\in T}\theta _{j}\sum \nolimits _{j\in S}\frac{1}{c_{j}}\sum \nolimits _{j\in S}\alpha _{j}} <1 \text { for }\, \left| T\right| > 0. \end{aligned}$$
(49)

\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGinty, M. Leadership and Free-Riding: Decomposing and Explaining the Paradox of Cooperation in International Environmental Agreements. Environ Resource Econ 77, 449–474 (2020). https://doi.org/10.1007/s10640-020-00505-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-020-00505-1

Keywords

JEL Classification

Navigation