We employ a two-stage wholesale and retail electricity market model largely building on Borenstein and Holland (2005) and Allcott (2012), but also incorporate carbon tax driven investments and a detailed representation of variable renewable generation technologies. The details of the model are described below. For the numerical application, we formulate it as a mixed complementarity problem in GAMS (Rutherford 1995). The code is available as open-source using the acronym LORETTA (“LOng-run Electricity market model with Time-varying retail TAriffing”).Footnote 1
Electricity Demand
Wholesale electricity supply has to match aggregate demand \({\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right)\) in each hour t\(\in\)T, where \(p_{t}+pc_{t}\) is the retail real-time price and \({\bar{p}}+pc\) is the flat retail rate. In line with previous work, we assume that consumers have the same underlying demand function \(Q_{t}\left( p\right)\) and reduce demand if their respective retail rate p increases, so that \(\frac{\partial Q_{t}}{\partial p}<0.\) An exogenously given share of consumers, \(\alpha \in \left[ 0,1\right]\), consists of real-time priced customers facing an hourly varying retail electricity price \(p_{t}\), while the remaining \(\left( 1-\alpha \right)\) flat-rate consumers pay the time-invariant tariff \({\bar{p}}.\) Additionally, consumers pay separately for generation capacity and reserves. While flat-rate consumers pay a constant capacity price pc per unit of electricity, RTP consumers pay the time-varying capacity priceFootnote 2\(pc_{t}\). That is, RTP consumers face scarcity prices, whereas flat-rate consumers do not. Hence, in each period t RTP consumers consume \(\alpha Q_{t}\left( p_{t}+pc_{t}\right)\) units of electricity, while flat-rate consumers’ demand is equal to \(\left( 1-\alpha \right) Q_{t}\left( {\bar{p}}+pc\right)\). Hourly aggregate electricity demand is then given by \({\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) =\alpha Q_{t}\left( p_{t}+pc_{t}\right) +\left( 1-\alpha \right) Q_{t}\left( {\bar{p}}+pc\right)\). Increasing the RTP share \(\alpha\) makes aggregate demand more price elastic, which implies that it rotates around the point \(\left( {\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) ,{\bar{p}}+pc\right)\).Footnote 3 For the simulation, we assume an isoelastic demand function, \(Q_{t}\left( p\right) =a_{t}p^{\epsilon }\), where \(\epsilon <0\) is the constant own-price elasticity and \(a_{t}\) a scaling parameter capturing structural demand variations over time. Hourly aggregate demand in the simulation is thus \({\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) =a_{t}\left[ \alpha \left( p_{t}+pc_{t}\right) ^{\epsilon }+\left( 1-\alpha \right) \left( {\bar{p}}+pc\right) ^{\epsilon }\right].\)
Electricity Supply and Capacity Investment
There are I generation technologies available indexed by \(i=\left\{ 1,\ldots ,I\right\}\) where \(V\subset I\) and \(NV\subset I\) is the subset of variable renewable energy technologies (VRE) and non-variable, carbon dioxide (\({\text{CO}}_{2}\)) emitting technologies,Footnote 4 respectively. Denoting \(av_{it}\) as the technology specific capacity factor in period t, installed capacity of each non-variable technology i, \(K_{i}^{NV},\) is always fully available, that is \(av_{it}=1\,\forall i\in NV,\,t\in T\), whereas capacity of VRE technology i, \(K_{i}^{V}\), is time-varyingly available due to varying wind speeds or solar radiation, that is \(av_{it}\in [0,1]\,\forall i\in V,\,t\in T\). Up to available capacity \(av_{it}K_{i},\) technology i produces each megawatt hour (MWh) of electricity at constant marginal costs \(mc_{i}\left( \tau \right)\), where \(\tau\) is the exogenous per unit carbon dioxide emissions tax which increases marginal production costs of non-variable technology i by \(\frac{\partial mc_{i}^{NV}}{\partial \tau }>0.\) Annuitized fixed costs of capacity amount to \(fc_{i}\) units per megawatt (MW) and year. If assuming that the carbon tax is zero, non-variable technologies can be ordered by increasing marginal production costs \(mc_{i}^{NV}>mc_{j}^{NV}\,\forall i>j\) and decreasing annual fixed costs \(fc_{i}^{NV}<fc_{j}^{NV}\,\forall i>j\), principally allowing for entry of each technology type in the long-run equilibrium (Crew et al. 1995).Footnote 5 Since VRE technologies produce at negligible or zero marginal costs without emitting carbon dioxide (\({\text{CO}}_{2}\)), that is \(mc_{i}^{V}=0\) and \(\frac{\partial mc_{i}^{V}}{\partial \tau }=0\,\forall i\in V\), they become relatively cheaper than non-variable technologies as the carbon tax \(\tau\) is raised from zero. Likewise, non-variable technology i becomes relatively cheaper than technology j given that \(\frac{\partial mc_{i}}{\partial \tau }<\frac{\partial mc_{j}}{\partial \tau }\,\forall i>j.\) That is, we assume that higher marginal cost technologies such as natural gas plants emit less \({\text{CO}}_{2}\) per MWh than low marginal cost technologies such as hard coal fired plants. Therefore, the carbon tax increases the marginal generation costs of coal fired plants stronger than those of natural gas fired plants. The tax \(\tau\) is thus also the main driver ofcapacity portfolio changes in the non-variable technology set.
By maximizing total annual profits \(\pi _{i}\left( q_{it},K_{i}\mid w_{t},r\right)\) under perfect foresight and perfect competition and thus taking wholesale electricity price \(w_{t}\) as given, generators decide upon investment in capacity \(K_{i}\) of technology i and output \(q_{it}.\) Output choice is always constrained by available installed capacity, such that \(q_{it}\le av_{it}K_{i}\,\forall t,i.\) In addition to their short-run profits from energy sales \(q_{it}\left( w_{t}-mc_{i}\right) ,\) non-variable technologies receive a separate, uniform capacity payment r, which is determined in the capacity market equilibrium discussed below. This gives their total annual profit as
$$\begin{aligned} \pi _{i}^{NV}\left( q_{it},K_{i}\mid w_{t},r\right)&= {} \sum _{t=1}^{T}\left[ w_{t}-mc_{i}^{NV}\right] q_{it}^{NV}+rK_{i}^{NV}-fc_{i}^{NV}K_{i}^{NV}. \end{aligned}$$
(1)
Each VRE technology \(i\in V\) fully depends on remuneration from energy sales and thus makes annual profits equal to
$$\begin{aligned} \pi _{i}^{V}\left( q_{it},K_{i}\mid w_{t}\right)&= {} \sum _{t=1}^{T}\left[ w_{t}-mc_{i}^{V}\right] q_{it}^{V}-fc_{i}^{V}K_{i}^{V}. \end{aligned}$$
(2)
Each generator using technology i optimally produces at capacity and supplies \(q_{it}=av_{it}K_{i}\) each time marginal revenue is larger than marginal costs, that is \(w_{t}>mc_{i}\). If \(w_{t}=mc_{i}\), a generator is indifferent between any output level, that is \(q_{it}\ge 0\), but produces nothing if \(w_{t}<mc_{i}.\)Footnote 6 Hence, each generating unit has an inverse L-shaped supply curve so that aggregate wholesale supply is a step function (merit order) where each plateau reflects the constant marginal costs of all technologies present in equilibrium (cf. Holland and Mansur 2006).
Under perfect competition, generators invest in capacity of non-variable technology i until (annualized) the fixed costs per unit of capacity \(fc_{i}\) equal the accumulated short-run profits \(\sum _{t=1}^{T}\left[ w_{t}-mc_{i}\right]\) plus the price of capacity and reserves rFootnote 7
$$\begin{aligned} \sum _{t=1}^{T}\left[ w_{t}-mc_{i}^{NV}\right] +r&= {} fc_{i}^{NV},\forall i\in NV. \end{aligned}$$
(3)
Likewise, generators invest in VRE capacity of technology i until the fixed costs \(fc_{i}\) equal the respective stream of short-run profits \(\sum _{t=1}^{T}\left[ w_{t}-mc_{i}\right]\) weighted by the hourly varying capacity factor \(av_{it}\)
$$\begin{aligned} \sum _{t=1}^{T}\left[ w_{t}-mc_{i}^{V}\right] av_{it}&= {} fc_{i,}^{V}\forall i\in V. \end{aligned}$$
(4)
As indicated above, we assume that investment in VRE technologies only becomes profitable, if they become sufficiently cheap through increasing the carbon tax. Equation (4) implies that VRE profitability is strongly determined by the technology specific correlation of capacity availability \(av_{it}\) with the wholesale price \(w_{t}\) (Lamont 2008). If more capacity of the same VRE technology type enters the market, wholesale prices drop particularly when \(av_{it}\) is relatively high, resulting in decreasing profitability. Hence, if a certain VRE share is supposed to materialize in the long-run equilibrium, wholesale prices have to rise disproportionately in periods, where \(av_{it}\) is relatively low. As shown by Green and Léautier (2015), this also implies that supportive measures, such as the carbon tax in our case, likely require to rise disproportionately with the VRE market penetration, ceteris paribus. In combination with the typically low average availability of VRE sources, \(av_{it}\), this decreasing profitability effect has the important implication that equilibrium wholesale prices settle at relatively high levels on average in presence of VRE market entry. This crucially drives the differences found in the benefits from real-time retail pricing in a market with and without VRE supply.
The Reserve Capacity Mechanism
Previous findings suggest that most of the efficiency gains from introducing RTP result from mitigating the inefficiency from “over-consumption” during high-price periods through savings in costly peak-generation capacity. These savings can be particularly large in the presence of planning reserve margins (PRM), which are implemented in many U.S. markets to induce a certain amount of excess generation capacity. To account for this excess-capacity effect in our numerical application, we impose a planning reserve margin constraint on hourly output by non-variable generation capacity, \(q_{it}^{NV},\) similar to Allcott (2012) as follows
$$\begin{aligned} \sum _{i}^{NV}q_{it}^{NV}\le \frac{\sum _{i}^{NV}K_{i}^{NV}}{\left( 1+m\right) },\forall t, \end{aligned}$$
(5)
noting that in equilibrium \(\sum _{i}^{NV}q_{it}^{NV}\) is equal to aggregate net demand, \({\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) -\sum _{i}^{V}q_{it}\), i.e. total demand less supply from VRE technologies. Constraint (5) effectively requires that non-variable capacity is installed in excess of net peak demand by m percent. Technically it implies that the hourly aggregate supply curve becomes inelastic each time aggregate net demand exceeds installed non-variable capacity less reserves, \(\frac{\sum _{i}^{NV}K_{i}^{NV}}{\left( 1+m\right) }\).Footnote 8 The associated Karush–Kuhn–Tucker multiplier, \(\rho _{t}\), reflects the time-varying shadow value of non-variable generation capacity plus reserves, \(\left( 1+m\right) K^{NV}\), and equals the scarcity price at the intersection of net demand and the inelastic part of the supply curve each time constraint (5) binds.Footnote 9 RTP consumers face this scarcity price via the real-time capacity retail price, \(pc_{t}\) (see Sect. 2.4), and correspondingly reduce their demand during peak-demand periods. Flat-rate consumers do not and instead face a constant capacity price component in their retail rate, pc.
This set up basically mimics a perfectly competitive market for installed capacity with perfect foresight regarding peak-demand.Since available capacity always exceeds demand, the wholesale price, \(w_{t}\), never exceeds the marginal production costs of the most expensive technology deployed in equilibrium.Footnote 10 Accordingly, generators do not face \(\rho _{t}\) as it occurs, and therefore do not change their output decisions. Instead, they are assumed to receive a single forward payment per unit of installed capacity, r, which equals the stream of scarcity prices, \(\sum _{t=1}^{T}\rho _{t}\), and thus influences only their investment decision regarding non-variable generation capacity, \(K_{i}^{NV}\) [cf. expression (3)].Footnote 11 The capacity payment, r, can be interpreted as the uniform clearing price of a forward capacity market auction, which would provide a secure return on investments in non-variable generation capacity (cf. Cramton et al. 2013).
Retail Market Equilibrium
In the perfectly competitive retail market homogeneous retail firms buy electricity at wholesale prices \(w_{t}\) and sell it on to the final consumers either at the real-time price \(p_{t}\) or flat rate tariff \({\bar{p}}\). We abstract from transmission and distribution costs and corresponding charges. Additionally, retail firms have to procure non-variable generation capacity in proportion to net demand served plus reserves, the total costs of which amount to \(\left( 1+m\right) \sum _{t=1}^{T}\rho _{t}\left( {\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) -\sum _{i}^{V}q_{it}\right) .\) Retailers refinance these costs through charging RTP consumers the time-varying capacity price \(pc_{t}\) during hours of scarce capacity, and charging flat-rate consumers the time-invariant capacity price pc per unit of consumed electricity. Total annual retail profits, \(\pi ^{rt}\), are hence given by
$$\begin{aligned} \pi ^{rt}&= {} \sum _{t=1}^{T}\left( p_{t}-w_{t}\right) \alpha Q_{t}\left( p_{t,}+pc_{t}\right) \nonumber \\&\quad+ \left( {\bar{p}}-w_{t}\right) \left( 1-\alpha \right) Q_{t}\left( {\bar{p}}+pc\right) \nonumber \\&\quad+ pc_{t}\alpha Q_{t}\left( p_{t}+pc_{t}\right) -\rho _{t}\left( 1+m\right) \alpha \left( Q_{t}\left( p_{t}+pc_{t}\right) -\sum _{i}^{V}q_{it}\right) \nonumber \\&\quad+ pc\left( 1-\alpha \right) Q_{t}\left( {\bar{p}}+pc\right) -\rho _{t}\left( 1+m\right) \left( 1-\alpha \right) \left( Q_{t}\left( {\bar{p}}+pc\right) -\sum _{i}^{V}q_{it}\right) . \end{aligned}$$
(6)
The first and second term in (6) represent retail profits from selling electricity to RTP and flat-rate consumers, while the subsequent terms comprise profits from capacity plus reserves sales. For given \(w_{t}\) and \(\rho _{t}\), each retailer determines the retail real-time price \(p_{t}\), the flat tariff \({\bar{p}}\), the constant and time-varying retail capacity price pc and \(pc_{t}\), respectively, by maximizing \(\pi ^{rt}\). Free entry of retail firms and the absence of transaction costs of switching retailers, which we assume, imply that retailers earn zero-profits in equilibrium. Moreover, we exclude cross subsidization of costs in retail rates such that the following zero-profit conditions have to hold in equilibrium:
$$\begin{aligned} \sum _{t=1}^{T}\left( p_{t}-w_{t}\right) \alpha Q_{t}\left( p_{t}+pc_{t}\right)&=0, \end{aligned}$$
(7)
$$\begin{aligned} \sum _{t=1}^{T}\left( {\bar{p}}-w_{t}\right) \left( 1-\alpha \right) Q_{t}\left( {\bar{p}}+pc\right)&=0, \end{aligned}$$
(8)
$$\begin{aligned} \sum _{t=1}^{T}\alpha Q_{t}\left( p_{t}+pc_{t}\right) \left( pc_{t}-\rho _{t}\left( 1+m\right) \right)&+\rho _{t}\left( 1+m\right) \alpha \sum _{i}^{V}q_{it}=0, \end{aligned}$$
(9)
$$\begin{aligned} \sum _{t=1}^{T}\left( 1-\alpha \right) Q_{t}\left( {\bar{p}}+pc\right) \left( pc-\rho _{t}\left( 1+m\right) \right)&+\rho _{t}\left( 1+m\right) \left( 1-\alpha \right) \sum _{i}^{V}q_{it}=0. \end{aligned}$$
(10)
Equation (7) implies that the competitive real-time retail price \(p_{t}\) equals the electricity wholesale price \(w_{t}\) in each period, that is \(p_{t}=w_{t}\,\forall t.\) The solution to (8) yields the competitive flat retail price \({\bar{p}}\) the demand weighted average of \(w_{t}\):
$$\begin{aligned} {\bar{p}}&= {} \frac{\sum _{t=1}^{T}w_{t}Q_{t}\left( {\bar{p}}+pc\right) }{\sum _{t=1}^{T}Q_{t}\left( {\bar{p}}+pc\right) }. \end{aligned}$$
(11)
Furthermore, following (9) \(pc_{t}\) has to equal the costs for capacity per unit of consumed electricity in each period of scarce capacity, i.e.
$$\begin{aligned} pc_{t}&=\frac{\left( 1+m\right) \rho _{t}\left( Q_{t}\left( p_{t}+pc_{t}\right) -\sum _{i}^{V}q_{it}\right) }{Q_{t}\left( p_{t}+pc_{t}\right) }. \end{aligned}$$
(12)
Equation (10) implies that the time-invariant capacity price pc is a weighted average of the hourly capacity price \(\rho _{t}\), where the weights equal the ratio of hourly net demand plus reserves and total demand by flat-rate consumers
$$\begin{aligned} pc&=\frac{\sum _{t=1}^{T}\left( 1+m\right) \rho _{t}\left( Q_{t}\left( {\bar{p}}+pc\right) -\sum _{i}^{V}q_{it}\right) }{\sum _{t=1}^{T}Q_{t}\left( {\bar{p}}+pc\right) }. \end{aligned}$$
(13)
Consequently, RTP and flate rate consumers respectively pay \(p_{t}+pc_{t}\) and \({\bar{p}}+pc\) in each period t.Footnote 12
Wholesale Market Equilibrium
Borenstein (2005) as well as Allcott (2012) demonstrate that the above model yields a unique long-run equilibrium in the wholesale, retail and capacity market. It is defined by the vector of installed capacity \({\mathbf {K}}\), the uniform capacity price for generators r, the flat electricity and capacity retail price \({\bar{p}}\) and pc. Moreover, it is defined by the set of equilibrium wholesale prices \(\left\{ w_{t}\right\}\) as well as retail prices \(\left\{ p_{t}\right\}\) and \(\left\{ pc_{t}\right\}\), which clear demand and supply in each hour t, that is \({\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) =S\left( p_{t}\right) \,\forall t\) , noting that the retail market equilibrium implies \(w_{t}=p_{t}\,\forall t.\)
The wholesale clearing prices and quantities can be described in more detail by first noting that hourly aggregate supply is an upward sloping step function of \(p_{t}\) due to the the clearly ranked marginal production costs \(mc_{i}\in \left[ 0,mc_{NV}\right]\), where we now use the index \(i=0\) for denoting each technology from the variable technology subset V. For \(0\le i\le I\), the set of equilibrium electricity prices can be defined by the vertical segment between each step, \(v_{i}=\left\{ t:\,mc_{i}<p_{t}<mc_{i+1}\right\}\), and the horizontal segment representing the marginal costs of the marginal technology \(h_{i}=\left\{ t:\,p_{t}=mc_{i}\right\}\) (cf. Green and Léautier 2015). Let \(u_{it}\in \left[ 0,1\right]\) denote the hourly degree of capacity utilization, that is the dispatch rate of technology i. Then on \(h_{0}\), VRE technology \(v\in \left[ 1,V\right]\) produces at the margin so that demand and supply clear at \({\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) =\sum _{v=1}^{V}u_{v,t}av_{v,t}K_{v}\). On \(h_{i}\) for \(i\ge 2\), technology i produces at the margin and VRE technologies at available capacity, therefore \({\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) =u_{i,t}K_{i}+\sum _{j=1}^{i-1}K_{j}+\sum _{v=1}^{V}{av_{v,t}K_{v}}\). On \(v_{i}\) demand intersects a vertical segment of the supply curve where technology \(i\ge 1\) produces at capacity, while technology \(i+1\) is not dispatched, which gives the equilibrium quantity as \({\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) =\sum _{j=1}^{i}K_{j}+\sum _{v}^{V}{av_{v,t}K_{v}}\). Market clearing on \(v_{I}\) implies that demand is rationed by the scarcity price \(pc_{t}>0\), such that \({\overline{Q}}_{t}\left( p_{t}+pc_{t},{\bar{p}}+pc\right) =\frac{\sum _{i=1}^{I}K_{i}}{\left( 1+m\right) }+\sum _{v}^{V}av_{v,t}K_{v}.\)
Finally, recall that due to free entry each technology \(i\in I\) of the long-run equilibrium capacity vector \({\mathbf {K}}\) earns zero-profits, that is \(\pi _{i}=0\,\forall i.\)