Skip to main content

Advertisement

Log in

Biodiversity and Optimal Multi-species Ecosystem Management

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

We analyze optimal multi-species management in a dynamic bio-economic model taking into account both harvesting profit and biodiversity value. Within an analytical model, we show that extinction is never optimal when a global biodiversity value is taken into account. Moreover, a stronger preference for species diversity leads to a more even distribution of stock sizes in the optimal steady state, and a higher value of biodiversity increases steady state stock sizes for all species when species are ecologically independent or symbiotic. For a predator–prey ecosystem, the effects may be positive or negative depending on relative prices and the strength of species interaction. The analytical results are illustrated and extended using an age-structured three-species predator–prey model for the Baltic cod, sprat, and herring fisheries. In this quantitative application, we find that using stock biomass or stock numbers as abundance indicators in the biodiversity index may lead to opposite results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. More specifically, a CES-function fulfills the first four axioms mentioned in Buckland et al. (2005). Axiom 5 and 6 refer to characteristics of the biodiversity measures related to their empirical estimation, which is not relevant in the theoretical context of this paper.

  2. Species-level biodiversity can also be measured by phenotypic variation. Higher diversity scores would then be assigned to collections of species that are evolutionarily more divergent (Armsworth et al. 2004). Applications in the economic context using phenotypic variation as a measure for biodiversity include Weitzman (1992) and Nehring and Puppe (2004).

  3. These are the first four out of six axioms in Buckland et al. (2005); Buckland et al.’s last two axioms refer to the sampling and empirical estimation of the indices and are thus not relevant in the theoretical context of this paper.

  4. This is a reasonable assumption for the Baltic Sea as different species are caught by different fleets (Voss et al. 2014a). We thus use this assumption in the analytical part of this paper as well as in the application to Baltic Sea fisheries.

References

  • Alexander R (2000) Modelling species extinction: the case for non-consumptive values. Ecol Econ 35:259–269

    Article  Google Scholar 

  • Armsworth PR, Kendall BE, Davis FW (2004) An introduction to biodiversity concepts for environmental economists. Resour Energy Econ 26:115–136

    Article  Google Scholar 

  • Arrow KJ, Chenery H, Minhas BS, Solow RM (1961) Capital-labor substitution and economic efficiency. Rev Econ Stat 43(3):225–250

    Article  Google Scholar 

  • Arrow KJ, Kurz M (1970) Public investment, the rate of return, and optimal fiscal policy. Johns Hopkins University Press, Baltimore

  • Atkinson AB (1970) On the measurement of inequality. J Econ Theory 2(3):244–263

    Article  Google Scholar 

  • Brown G, Berger B, Ikiara M (2005) A predator–prey model with an application to lake victoria fisheries. Mar Resour Econ 20(3):221–248

    Article  Google Scholar 

  • Buckland S, Magurran A, Green R, Fewster R (2005) Monitoring change in biodiversity through composite indices. Philos Trans R Soc B 360:243–254

    Article  Google Scholar 

  • Bulte E, van Kooten G (2000) The economics of nature: managing biological assets. Blackwell, Massachusetts

    Google Scholar 

  • Clark C (1973) Profit maximization and the extinction of animal species. J Polit Econ 81(4):950–961

    Article  Google Scholar 

  • Dixit AK, Stiglitz JE (1977) Monopolistic competition and optimum product diversity. Am Econ Rev 67(3):297–308

    Google Scholar 

  • Eichner T, Tschirhart J (2007) Efficient ecosystem services and naturalness in an ecological/economic model. Environ Resour Econ 37:733–755

    Article  Google Scholar 

  • Flaaten O (1991) Bioeconomics of sustainable harvest of competing species. J Environ Econ Manag 20(2):163–180

    Article  Google Scholar 

  • GOC (2014) From decline to recovery: a rescue package for the global ocean. Report Summary, Global Ocean Commission, Oxford, UK

  • Hannesson R (1983) Optimal harvesting of ecologically interdependent fish species. J Environ Econ Manag 10(4):329–345

    Article  Google Scholar 

  • ICES (2012) Report of the Baltic fisheries assessment working group (WGBFAS). ICES, Copenhagen

  • Kellner J, Sanchirico J, Hastings A, Mumby P (2010) Optimizing for multiple species and multiple values: tradeoffs inherent in ecosystem-based fisheries management. Conserv Lett 00:1–10

    Google Scholar 

  • Köster FW, Möllmann C (2000) Trophodynamic control by clupeid predators on recruitment success in baltic cod? ICES J Mar Sci 57:310–323

    Article  Google Scholar 

  • Kumar P (ed) (2010) The economics of ecosystems and biodiversity (TEEB) ecological and economic foundations. Routledge, New York

    Google Scholar 

  • Magurran A (2004) Measuring biological diversity. Blackwell Publishing, Malden

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis report. Island Press, Washington, DC

  • Nehring K, Puppe C (2004) Modelling phylogenetic diversity. Resour Energy Econ 26(2):205–235

    Article  Google Scholar 

  • Noack F, Manthey M, Ruitenbeek J, Mohadjer M (2010) Separate or mixed production of timber, livestock and biodiversity in the caspian forest. Ecol Econ 70:67–76

    Article  Google Scholar 

  • Pikitch E, Santora C, Babcock E, Bakun A, Bonfil R, Conover D, Dayton P, Doukakis P, Fluharty D, Heneman B, Houde E, Link J, Livingston P, Mangel M, McAllister M, Pope J, Sainsbury K (2004) Ecosystem-based fishery management. Science 305(5682):346–347

    Article  Google Scholar 

  • Quaas M, Requate T (2013) Sushi or fish fingers—seafood diversity, collapsing fish stocks, and multispecies fishery management. Scand J Econ 155(2):381–422

    Article  Google Scholar 

  • Quaas MF, Froese R, Herwartz H, Requate T, Schmidt JO, Voss R (2012) Fishing industry borrows from natural capital at high shadow interest rates. Ecol Econ 82:45–52

    Article  Google Scholar 

  • Ricker WE (1954) Stock and recruitment. J Fish Res Board Can 11:559–623

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin F, Lambin E, Lenton T, Scheffer M, Folke C, Schellnhuber H, Nykvist B, Wit CD, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder P, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell R, Fabry V, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2):32

    Article  Google Scholar 

  • Shannon C (1948a) A mathematical theory of communication. Bell Syst Tech J 27:379–423

  • Shannon C (1948b) A mathematical theory of communication. Bell Syst Tech J 28:623–656

  • Simpson E (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Spence AM (1974) Blue whales and applied control theory. In: Gottinger HW (ed) System approaches and environmental problems. Vandenhoeck and Ruprecht, Göttingen, pp 97–124

    Google Scholar 

  • Stavins R (2011) The problem of the commons: still unsettled after 100 years. Am Econ Rev 101(1):81–108

    Article  Google Scholar 

  • Tahvonen O (2009) Economics of harvesting age-structured fish populations. J Environ Econ Manag 58(3):281–299

    Article  Google Scholar 

  • Tahvonen O, Quaas M, Schmidt J, Voss R (2013) Optimal harvesting of an age-structured schooling fishery. Environ Resour Econ 54(1):21–39

    Article  Google Scholar 

  • Visbeck M, Kronfeld-Goharani U, Neumann B, Rickels W, Schmidt J, van Doorn E, Matz-Lück N, Proelss A (2014) A sustainable development goal for the ocean and coasts: global ocean challenges benefit from regional initiatives supporting globally coordinated solutions. Mar Policy 49:87–89

    Article  Google Scholar 

  • Voss R, Quaas M, Schmidt J, Hoffmann J (2014a) Regional trade-offs from multi-species maximum sustainable yield (MMSY) management options. Mar Ecol Prog Ser 498:1–12

    Article  Google Scholar 

  • Voss R, Quaas M, Schmidt J, Tahvonen O, Lindegren M, Möllmann C (2014b) Assessing social-ecological trade-offs to advance ecosystem-based fisheries management. PLoS ONE 9(9):e107811. doi:10.1371/journal.pone.0107811

  • Weitzman ML (1992) On diversity. Q J Econ 107(2):363–405

    Article  Google Scholar 

  • Weitzman ML (2014) Book review on ’nature in the balance: the economics of biodiversity’. J Econ Lit 52(4):1193–1194

    Article  Google Scholar 

Download references

Acknowledgments

We thank Lena Bednarz, Wilfried Rickels, and three anonymous reviewers for valuable comments on earlier versions of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Bertram.

Electronic supplementary material

Appendices

Appendix 1: Sufficiency Conditions

It is straightforward to verify that the sufficiency conditions are always fulfilled in the absence of species interactions, i.e., if Assumption A.1 holds, and if the biomass growth functions are concave.

For problems of optimal harvesting in multi-species systems however, non-concavities can easily arise, thus potentially violating the Arrow/Kurz (1970) sufficiency condition. Since the biodiversity index we are considering here is a concave function of stock sizes, the only way how including a biodiversity index may affect the sufficiency conditions is that the maximized Hamiltonian tends to become “more” concave. We formally illustrate this in the following by considering optimal harvesting of an ecosystem with competing species, based on Flaaten (1991). Consider the optimal harvesting of two competing species, where biomass dynamics are described by

$$\begin{aligned} {\dot{x}}_{1t}&=r_1\,x_{1t}\,\left( 1-x_{t1}-\gamma \,x_{2t}\right) -h_{1t}\end{aligned}$$
(30)
$$\begin{aligned} {\dot{x}}_{2t}&=r_2\,x_{2t}\,\left( 1-x_{t2}-\gamma \,x_{1t}\right) -h_{2t} \end{aligned}$$
(31)

with no harvesting costs and prices \(p_1\) and \(p_2\) for the harvest of the two species. To keep the analysis simple, we assume symmetric competition coefficients, \(\gamma \). From the first-order conditions (9) for this case, we obtain that the maximized Hamiltonian is given by

$$\begin{aligned} H^{\max }=p_1\,r_1\,x_{1t}\,\left( 1-x_{t1}-\gamma \,x_{2t}\right) +r_2\,x_{2t}\,\left( 1-x_{t2}-\gamma \,x_{1t}\right) -h_{2t}+v\,B(x_{1t},x_{2t}). \end{aligned}$$
(32)

For \(v=0\), the leading principal minors of the Hessian matrix for \(H^{\max }\) are

$$\begin{aligned} M_1&=-2\,p_1\,r_1\end{aligned}$$
(33)
$$\begin{aligned} M_2&=-\gamma ^2\,(p_1\,r_1+p_2\,r_2)^2+4\,p_1\,r_1\,p_2\,r_2. \end{aligned}$$
(34)

The Hessian of the maximized Hamiltonian is negative definite if the leading principal minors have alternating signs. \(M_1\) is always negative. \(M_2\) is positive if

$$\begin{aligned} \gamma&<\frac{\sqrt{p_1\,r_1\,p_2\,r_2}}{\frac{1}{2}\,\left( p_1\,r_1\,\gamma +p_2\,r_2\,\gamma \right) }, \end{aligned}$$
(35)

i.e., if the competition coefficient \(\gamma \) is smaller than the ratio of the geometric to the arithmetic mean of \(p_1\,r_1\) and \(p_2\,r_2\).

For \(v>0\), the leading principal minors of the Hessian matrix for \(H^{\max }\) are

$$\begin{aligned} M_1&=-2\,p_1\,r_1-B_{x_1x_1}(x_1,x_2)\end{aligned}$$
(36)
$$\begin{aligned} M_2&=-\gamma ^2\,(p_1\,r_1+p_2\,r_2)^2+4\,p_1\,r_1\,p_2\,r_2\nonumber \\&\;+ v\,\left( \underbrace{2\,\gamma \,\left( p_1\,r_1+p_2\,r_2\right) \,B_{x_1x_2}(x_1,x_2)}_{>0}\underbrace{-2\,p_1\,r_1\,B_{x_2x_2} (x_1,x_2)}_{>0}\underbrace{-2\,p_2\,r_2\,B_{x_1x_1}(x_1,x_2)}_{>0}\right) \nonumber \\&\;+ v^2\,\left( \underbrace{B_{x_1x_1}(x_1,x_2)\,B_{x_1x_1}(x_1,x_2) -\left( B_{x_1x_2}(x_1,x_2)\right) ^2}_{>0}\right) . \end{aligned}$$
(37)

Consequently, a value \(v>0\) increases the range of values for \(\gamma \) for which the second principal minor of the Hessian is positive.

Appendix 2: Comparative Statics w.r.t. v

Under Assumption A.2, but with ecological interactions, condition (10b) simplifies to

$$\begin{aligned} \left( \rho -\sum \limits _{j=1}^n\frac{p_j}{p_i}\,G_{jx_i}\right) \,p_i&=v \,B_{x_i}. \end{aligned}$$
(38)

Differentiating (38) with respect to v, we obtain

$$\begin{aligned}&-\left( p_1\,G_{1\bar{x}_1\bar{x}_1}+p_2\,G_{2\bar{x}_1\bar{x}_1} +v\,B_{\bar{x}_1\bar{x}_1}\right) \,\frac{d\bar{x}_1}{dv}\nonumber \\&\quad -\left( p_1\,G_{1\bar{x}_1\bar{x}_2}+p_2\,G_{2\bar{x}_1\bar{x}_2} +v\,B_{\bar{x}_1\bar{x}_2}\right) \,\frac{d\bar{x}_2}{dv}=B_{\bar{x}_1} \end{aligned}$$
(39)
$$\begin{aligned}&-\left( p_1\,G_{1\bar{x}_2\bar{x}_1}+p_2\,G_{2\bar{x}_2\bar{x}_1} +v\,B_{\bar{x}_2\bar{x}_1}\right) \,\frac{d\bar{x}_1}{dv}\nonumber \\&\quad -\left( p_1\,G_{1\bar{x}_2\bar{x}_2}+p_2\,G_{2\bar{x}_2\bar{x}_2} +v\,B_{\bar{x}_2\bar{x}_2}\right) \,\frac{d\bar{x}_2}{dv}=B_{\bar{x}_2}. \end{aligned}$$
(40)

Solving yields

$$\begin{aligned} \frac{d\bar{x}_1}{dv}&=\frac{1}{\Delta }\,\left( B_{\bar{x}_2}\,\left( p_1\,G_{1\bar{x}_1 \bar{x}_2}+p_2\,G_{2\bar{x}_1\bar{x}_2} +v\,B_{\bar{x}_1\bar{x}_2}\right) \right. \nonumber \\&\left. \quad -B_{\bar{x}_1}\,\left( p_1\,G_{1\bar{x}_2\bar{x}_2}+p_2\,G_{2\bar{x}_2\bar{x}_2} +v\,B_{\bar{x}_2\bar{x}_2}\right) \right) \end{aligned}$$
(41)
$$\begin{aligned} \frac{d\bar{x}_2}{dv}&=\frac{1}{\Delta }\,\left( B_{\bar{x}_1}\,\left( p_1\,G_{1\bar{x}_2 \bar{x}_1}+p_2\,G_{2\bar{x}_2\bar{x}_1}+v\,B_{\bar{x}_2\bar{x}_1}\right) \right. \nonumber \\&\left. \quad -B_{\bar{x}_2}\,\left( p_1\,G_{1\bar{x}_1\bar{x}_1}+p_2\,G_{2\bar{x}_1\bar{x}_1} +v\,B_{\bar{x}_1\bar{x}_1}\right) \right) \end{aligned}$$
(42)

with

$$\begin{aligned} \Delta= & {} p_1^2\,\left( G_{1\bar{x}_1\bar{x}_1}\,G_{1\bar{x}_2\bar{x}_2} -G_{1\bar{x}_1\bar{x}_2}^2\right) +p_2^2\,\left( G_{2\bar{x}_1\bar{x}_1} \,G_{2\bar{x}_2\bar{x}_2}-G_{2\bar{x}_1\bar{x}_2}^2\right) \nonumber \\&+\,p_1\,p_2\,\left( G_{1\bar{x}_1\bar{x}_1}\,G_{2\bar{x}_2\bar{x}_2} +G_{2\bar{x}_1\bar{x}_1}\,G_{1\bar{x}_2\bar{x}_2}+2\,G_{1\bar{x}_1\bar{x}_2} \,G_{2\bar{x}_1\bar{x}_2}\right) \nonumber \\&+\,v\,\bigg (B_{\bar{x}_1\bar{x}_1}\,\left( p_1\,G_{1\bar{x}_2\bar{x}_2} +p_2\,G_{2\bar{x}_2\bar{x}_2}\right) +B_{\bar{x}_2\bar{x}_2} \,\left( p_1\,G_{1\bar{x}_1\bar{x}_1}+p_2\,G_{2\bar{x}_1\bar{x}_1}\right) \nonumber \\&-2\,B_{\bar{x}_1\bar{x}_2}\,\left( p_1\,G_{1\bar{x}_1\bar{x}_2} +p_2\,G_{2\bar{x}_1\bar{x}_2}\right) \bigg )\nonumber \\&+v^2\,\left( B_{\bar{x}_1\bar{x}_1}\,B_{\bar{x}_2\bar{x}_2} -B_{\bar{x}_1\bar{x}_2}^2\right)>0\nonumber \\= & {} p_1^2\,\left( G_{1\bar{x}_1\bar{x}_1}\,G_{1\bar{x}_2\bar{x}_2} -G_{1\bar{x}_1\bar{x}_2}^2\right) +p_2^2\,\left( G_{2\bar{x}_1\bar{x}_1} \,G_{2\bar{x}_2\bar{x}_2}-G_{2\bar{x}_1\bar{x}_2}^2\right) \nonumber \\&+\,p_1\,p_2\,\left( G_{1\bar{x}_1\bar{x}_1}\,G_{2\bar{x}_2\bar{x}_2} +G_{2\bar{x}_1\bar{x}_1}\,G_{1\bar{x}_2\bar{x}_2}+2\,G_{1\bar{x}_1\bar{x}_2} \,G_{2\bar{x}_1\bar{x}_2}\right) \nonumber \\&+\,v\,\bigg (B_{\bar{x}_1\bar{x}_1}\,\left( p_1\,G_{1\bar{x}_2\bar{x}_2} +p_2\,G_{2\bar{x}_2\bar{x}_2}\right) +B_{\bar{x}_2\bar{x}_2} \,\left( p_1\,G_{1\bar{x}_1\bar{x}_1}+p_2\,G_{2\bar{x}_1\bar{x}_1}\right) \nonumber \\&-2\,B_{\bar{x}_1\bar{x}_2}\,\left( p_1\,G_{1\bar{x}_1\bar{x}_2} +p_2\,G_{2\bar{x}_1\bar{x}_2}\right) \bigg )>0. \end{aligned}$$
(43)

Appendix 3. Proof of Proposition 2

For \(G_{i\bar{x}_i\bar{x}_j}=0\), the expressions (13) and (14) simplify to

$$\begin{aligned} \frac{d\bar{x}_1}{dv}&=\frac{1}{\Delta }\,\left( B_{\bar{x}_2}\,v\,B_{\bar{x}_1\bar{x}_2} -B_{\bar{x}_1}\,\left( p_2\,G_{2\bar{x}_2\bar{x}_2}+v\,B_{\bar{x}_2\bar{x}_2}\right) \right) >0 \end{aligned}$$
(44)
$$\begin{aligned} \frac{d\bar{x}_2}{dv}&=\frac{1}{\Delta }\,\left( B_{\bar{x}_1}\,v\,B_{\bar{x}_2\bar{x}_1} -B_{\bar{x}_2}\,\left( p_1\,G_{1\bar{x}_1\bar{x}_1}+v\,B_{\bar{x}_1\bar{x}_1} \right) \right) >0 \end{aligned}$$
(45)

with

$$\begin{aligned} \Delta =p_1\,p_2\,G_{1\bar{x}_1\bar{x}_1}\,G_{2\bar{x}_2\bar{x}_2} +v\,B_{\bar{x}_1\bar{x}_1}\,p_2\,G_{2\bar{x}_2\bar{x}_2} +v\,B_{\bar{x}_2\bar{x}_2}\,p_1\,G_{1\bar{x}_1\bar{x}_1}>0. \end{aligned}$$
(46)

This concludes the proof of part (i) of the proposition.

For \(G_{i\bar{x}_i\bar{x}_j}>0\), \(p_1\,G_{1\bar{x}_1\bar{x}_2}+p_2\,G_{2\bar{x}_1\bar{x}_2}>0\) such that the RHS of  (13) and  (14) are positive. This concludes the proof of part (ii) of the proposition.

Appendix 4: Comparative Statics w.r.t. p

Differentiating (38) with respect to \(p_1\) for \(i=1,2\) we obtain

$$\begin{aligned}&\left( \rho - G_{1\bar{x}_1} \right) -\left( p_1\,G_{1\bar{x}_1\bar{x}_1}+p_2\,G_{2\bar{x}_1\bar{x}_1} +v\,B_{\bar{x}_1\bar{x}_1}\right) \,\frac{d\bar{x}_1}{dp_1}\nonumber \\&\quad -\left( p_1\,G_{1\bar{x}_1\bar{x}_2}+p_2\,G_{2\bar{x}_1\bar{x}_2} +v\,B_{\bar{x}_1\bar{x}_2}\right) \,\frac{d\bar{x}_2}{dp_1}=0 \end{aligned}$$
(47)
$$\begin{aligned}&- G_{1\bar{x}_2} -\left( p_1\,G_{1\bar{x}_2\bar{x}_1}+p_2\,G_{2\bar{x}_2\bar{x}_1} +v\,B_{\bar{x}_2\bar{x}_1}\right) \,\frac{d\bar{x}_1}{dp_1}\nonumber \\&\quad -\left( p_1\,G_{1\bar{x}_2\bar{x}_2}+p_2\,G_{2\bar{x}_2\bar{x}_2} +v\,B_{\bar{x}_2\bar{x}_2}\right) \,\frac{d\bar{x}_2}{dp_1}=0. \end{aligned}$$
(48)

Solving yields

$$\begin{aligned} \frac{d\bar{x}_1}{dp_1}= & {} \frac{1}{\Delta }\,\left( (-G_{1 \bar{x}_2}\,\left( p_1\,G_{1\bar{x}_1\bar{x}_2}+p_2\,G_{2\bar{x}_1\bar{x}_2} +v\,B_{\bar{x}_1\bar{x}_2}\right) \right. \nonumber \\&\left. +(\rho - G_{1\bar{x}_1})\,\left( p_1\,G_{1\bar{x}_2\bar{x}_2} +p_2\,G_{2\bar{x}_2\bar{x}_2}+v\,B_{\bar{x}_2\bar{x}_2}\right) \right) \end{aligned}$$
(49)
$$\begin{aligned} \frac{d\bar{x}_2}{dp_1}= & {} \frac{1}{\Delta }\,\left( -(\rho - G_{1\bar{x}_1})\,\left( p_1\,G_{1\bar{x}_2\bar{x}_1}+p_2\,G_{2\bar{x}_2\bar{x}_1} +v\,B_{\bar{x}_2\bar{x}_1}\right) \right. \nonumber \\&\left. +\,G_{1\bar{x}_2}\,\left( p_1\,G_{1\bar{x}_1\bar{x}_1}+p_2\,G_{2\bar{x}_1\bar{x}_1} +v\,B_{\bar{x}_1\bar{x}_1}\right) \right) \end{aligned}$$
(50)

with \(\Delta \) as above.

Appendix 5: Proof of Proposition 3

For \(G_{i \bar{x}_j}=0\) and \(G_{i\bar{x}_i\bar{x}_j}=0\), the expressions (16) and  (17) simplify to

$$\begin{aligned} \frac{d\bar{x}_1}{dp_1}&=\frac{1}{\Delta }\, (\rho - G_{1\bar{x}_1}) (p_2\, G_{2 \bar{x}_2 \bar{x}_2 } +v\,B_{\bar{x}_2 \bar{x}_2} ) <0 \end{aligned}$$
(51)
$$\begin{aligned} \frac{d\bar{x}_2}{dp_1}&=\frac{-1}{\Delta }\, (\rho - G_{1\bar{x}_1}) v\,B_{\bar{x}_2 \bar{x}_1} <0 \end{aligned}$$
(52)

with

$$\begin{aligned} \Delta =p_1\,p_2\,G_{1\bar{x}_1\bar{x}_1}\,G_{2\bar{x}_2\bar{x}_2} +v\,B_{\bar{x}_1\bar{x}_1}\,p_2\,G_{2\bar{x}_2\bar{x}_2}+v\,B_{\bar{x}_2\bar{x}_2} \,p_1\,G_{1\bar{x}_1\bar{x}_1}>0. \end{aligned}$$
(53)

This concludes the proof of part (i) of the proposition.

For \(G_{i \bar{x}_j}>0\) and \(G_{i\bar{x}_j\bar{x}_i}>0\), \(p_1\,G_{1\bar{x}_1\bar{x}_2}+p_2\,G_{2\bar{x}_1\bar{x}_2}>0\) and \((\rho -G_{1 \bar{x}_1})>0\) such that the RHS of  (16) and  (17) are negative. This concludes the proof of part (ii) of the proposition.

Appendix 6: Proof of Proposition 4

We first determine the sign of the following term in (19):

$$\begin{aligned}&\frac{\partial B_{\bar{x}_2}}{\partial \omega }\,B_{\bar{x}_1\bar{x}_2}-\frac{\partial B_{\bar{x}_1}}{\partial \omega }\,B_{\bar{x}_2\bar{x}_2}\nonumber \\&\quad =-2^{-2\,\frac{\omega }{\omega -1}}\,\frac{{\hat{x}}^{\frac{1}{\omega }} \,\left( 1+{\hat{x}}^{\frac{1-\omega }{\omega }}\right) ^{\frac{2}{\omega -1}}}{x_2\,\omega ^2}\, \underbrace{\frac{1}{1-\omega }\,\left( \frac{{\hat{x}}^{\frac{1-\omega }{\omega }}}{1 +{\hat{x}}^{\frac{1-\omega }{\omega }}}\,\ln \left( {\hat{x}}\right) +\ln \left( \frac{1 +{\hat{x}}^{\frac{1-\omega }{\omega }}}{2}\right) ^{\frac{\omega }{\omega -1}} \right) }_{\equiv \Omega } \le 0.\nonumber \\ \end{aligned}$$
(54)

Lemma 1

\(\Omega \ge 0\) with \(\Omega =0\) only for \({\hat{x}}=1\).

Proof

\(\Omega \) has a global minimum \(\Omega =0\) at \({\hat{x}}=1\), as

$$\begin{aligned} \frac{d\Omega }{d{\hat{x}}}&=\frac{{\hat{x}}^{\frac{1-\omega }{\omega }}\,\ln ({\hat{x}})}{\omega \,{\hat{x}}\,\left( 1+{\hat{x}}^{\frac{1-\omega }{\omega }}\right) ^2} \end{aligned}$$
(55)

is zero if and only if \({\hat{x}}=1\), negative for all \({\hat{x}}<1\), and positive for all \({\hat{x}}>1\). \(\square \)

Lemma 1 implies that \(d\bar{x}_1/d\omega <0\) if \(\frac{\partial B_{x_1}}{\partial \omega }<0\). To determine the sign of this last expression, we define

$$\begin{aligned} \Gamma \equiv \frac{1}{1-\omega }\,\left( \frac{{\hat{x}}^{\frac{1-\omega }{\omega }}}{1+{\hat{x}}^{\frac{1-\omega }{\omega }}}\,\ln \left( {\hat{x}}\right) +\omega \,\ln \left( \frac{1+{\hat{x}}^{\frac{1-\omega }{\omega }}}{2}\right) ^{\frac{\omega }{\omega -1}}\right) . \end{aligned}$$
(56)

Note that \(\frac{\partial B_{x_1}}{\partial \omega }\lesseqqgtr 0\) if and only if \(\Gamma \lesseqqgtr 0\).

We have \(\Gamma =0\) for \({\hat{x}}=1\), and furthermore

$$\begin{aligned} \frac{d\Gamma }{d{\hat{x}}}&=\frac{d\Omega }{d{\hat{x}}}+\frac{{\hat{x}}^{\frac{1-\omega }{\omega }}}{{\hat{x}}\,\left( 1+{\hat{x}}^{\frac{1-\omega }{\omega }}\right) }=\frac{{\hat{x}}^{\frac{1-\omega }{\omega }}}{\omega \,{\hat{x}}\,\left( 1+{\hat{x}}^{\frac{1-\omega }{\omega }}\right) ^2}\,\left( \ln ({\hat{x}})+\omega \,\left( 1+{\hat{x}}^{\frac{1-\omega }{\omega }}\right) \right) . \end{aligned}$$
(57)

Thus, for \({\hat{x}}\ge 1\), \(d\Gamma /d{\hat{x}}>0\). Thus, \(\Gamma >0\) for all \({\hat{x}}>1\). This shows that for the larger stock, the effect of \(\omega \) on \(\bar{x}\) is ambiguous.

If \(x_1\) is the smaller stock, i.e., \({\hat{x}}<1\), the situation is more complicated. For the following lemma, we use \(\hat{\omega }\) to denote the solution of \(\hat{\omega }+\ln (\hat{\omega }-1)=0\), which is \(\hat{\omega }\approx 1.28\).

Lemma 2

(a) If \(\omega \ge \hat{\omega }\), \(\Gamma <0\) for all \(0<{\hat{x}}<1\).

(b) If \(\omega <\hat{\omega }\), it exists an \(0 \le \underline{\hat{x}} <1\) such that \(\Gamma <0\) for all \({\hat{x}}\in (\underline{\hat{x}},1)\).

Proof

In the following we show that for \(\omega \ge \hat{\omega }\), \(d\Gamma /d{\hat{x}}>0\) for all \({\hat{x}}>0\), and that for \(\omega <\hat{\omega }\), \(\Gamma \) has a unique minimum where it assumes some negative value.

To this end, we consider the expression \(\Sigma \equiv \ln ({\hat{x}})+\omega \,\left( 1+{\hat{x}}^{\frac{1-\omega }{\omega }}\right) \), which determines the sign of \(d\Gamma /d{\hat{x}}\), i.e., \(d\Gamma /d{\hat{x}}\gtreqqless 0\) if and only if \(\Sigma \gtreqqless 0\). We show that the equation \(\Sigma =0\) has no solution (i.e., \(\Gamma \) is monotonic) if \(\omega >{\hat{\omega }}\), and (at least) one solution if \(\omega \le \hat{\omega }\).

Note that for \({\hat{x}}=1\), \(\Sigma =2\,\omega >0\), and \(\lim \limits _{{\hat{x}}\rightarrow 0}\Sigma =+\infty \) for \(\omega >1\), as

$$\begin{aligned} \lim \limits _{{\hat{x}}\rightarrow 0}\frac{\ln ({\hat{x}})}{1+{\hat{x}}^{\frac{1-\omega }{\omega }}}=\lim \limits _{{\hat{x}}\rightarrow 0}\frac{\frac{1}{{\hat{x}}}}{\frac{1-\omega }{\omega }\,{\hat{x}}^{\frac{1-\omega }{\omega }-1}}=\lim \limits _{{\hat{x}}\rightarrow 0}\frac{\omega }{1-\omega }\,{\hat{x}}^{\frac{\omega -1}{\omega }}=0. \end{aligned}$$
(58)

Furthermore,

$$\begin{aligned} \frac{d\Sigma }{d{\hat{x}}}=\frac{1}{{\hat{x}}}\,\left( 1-(\omega -1)\,{\hat{x}}^{\frac{1-\omega }{\omega }}\right) . \end{aligned}$$
(59)

Case \(\omega \ge {\hat{\omega }}\): \(\Sigma \) has a minimum \(\Sigma ^*=\frac{\omega }{\omega -1}\,\left( \omega +\ln \left( \omega -1\right) \right) \) at \({\hat{x}}^\star =(\omega -1)^{\frac{\omega }{\omega -1}}\). This minimum is non-negative if \(\omega \ge {\hat{\omega }}\) and thus \(\Sigma \ge 0\) for all \({\hat{x}}<1\) in this case. This implies that \(\Gamma \) monotonically increases with \({\hat{x}}\) if \(\omega \ge {\hat{\omega }}\). Since \(\Gamma =0\) for \({\hat{x}} =1\), this implies that \(\Gamma <0\) for all \(0<{\hat{x}} < 1\). This concludes the proof of part (a) of the lemma.

Case \(\omega <\hat{\omega }\): The minimum of \(\Sigma \) is negative, \(\Sigma ^\star <0\). As \(\Sigma = 2\omega >0\) for \({\hat{x}}=1\), this implies that there exist a value \(\underline{\underline{{\hat{x}}}}>\hat{x}^\star \) where \(\Sigma =0\). At \(\underline{\underline{{\hat{x}}}}\), \(\Gamma \) assumes a minimum, i.e., for values of \(\hat{x}<\underline{\underline{{\hat{x}}}}\), \(\Gamma \) decreases with \({\hat{x}}\). Depending on the value of \(\omega <\hat{\omega }\), \(\Gamma \) may or may not intersect with zero for some value \(\hat{x}<\underline{\underline{{\hat{x}}}}\). Let \(\underline{x}\) be the maximum of that value of \(\hat{x}\) where \(\Gamma =0\) and zero. This concludes the proof of part (b) of the lemma. \(\square \)

Appendix 7: Parameter Values for the Age-Structured Bio-economic Model

Age

Maturity \(\gamma _{is}\)

Weight \(w_{is}\) [g]

Catchability \(q_{is}\)

Mortality \(M_2\)

\(\delta _{is}\) [\(10^{-4}\)]

Price \(p_{Cs}\)

C

H

S

C

H

S

C

H

S

C

H

S

H

S

C

1

0.00

0.0

0.17

80

11

52

0.00

0.28

0.27

0.0

0.170

0.132

3.32

8.74

0.00

2

0.13

0.7

0.93

179

20

84

0.11

0.44

0.49

0.2

0.173

0.137

2.31

7.08

0.35

3

0.36

0.9

1.0

511

25

96

0.42

0.66

0.79

0.2

0.178

0.132

0.45

6.74

0.35

4

0.83

1.0

1.0

838

31

105

0.81

0.82

0.85

0.2

0.188

0.132

0.45

6.74

0.35

5

0.94

1.0

1.0

1204

37

111

1.00

0.97

1.00

0.2

0.188

0.132

0.45

6.74

0.48

6

0.96

1.0

1.0

1796

43

113

1.00

0.96

1.00

0.2

0.188

0.132

0.45

6.74

0.48

7

0.96

1.0

1.0

2596

48

111

1.00

1.00

1.00

0.2

0.188

0.132

0.45

6.74

0.64

8

0.98

1.0

1.0

4068

53

113

1.00

1.00

1.00

0.2

0.188

0.132

0.45

6.74

0.73

\(c_C=55.2\) million euros, \(p_S-c_S=0.039\) euros/kg, and \(p_H-c_H=0.100\) euros/kg.

 

Type of stock-recruitment function

\(\phi _{i1}\)

\(\phi _{i2}\)

Cod

Ricker

1.7

549.0

Herring

Ricker

30.33

2156.0

Sprat

Beverton-Holt

104.2

503.2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertram, C., Quaas, M.F. Biodiversity and Optimal Multi-species Ecosystem Management. Environ Resource Econ 67, 321–350 (2017). https://doi.org/10.1007/s10640-015-9988-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-015-9988-8

Keywords

JEL Classification

Navigation