Skip to main content

Advertisement

Log in

Fishing in a Shallow Lake: Exploring a Classic Fishery Model in a Habitat with Shallow Lake Dynamics

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

Renewable resources such as fish exist within habitats. Harvesting activities may directly impact the habitat, beyond the influence caused by changing the balance between species. When harvesting activities impact stock size and habitat health in different ways, both states must be explicitly considered. A classic fisheries model is embedded in a habitat that exhibits shallow lake dynamics, where carrying capacity depends on habitat health and fishing effort damages the habitat. Hysteresis in the habitat dynamics can manifest itself as multiple steady states for both the dynamic and open access solutions. Numerical explorations of the model suggest that a new fishery in such a setting should often be managed to protect the health of the habitat, while it may not be optimal to restore a fishery in an already degraded habitat. Conventional policy tools applied in their classic form are unlikely to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderies JM, Janssen MA, Walker BH (2002) Grazing management, resilience, and the dynamics of a fire-driven rangeland system. Ecosystems 5(1): 23–44

    Article  Google Scholar 

  • Armstrong CW (2006) A note on the ecological–economic modelling of marine reserves in fisheries. Ecol Econ 62(2): 242–250

    Article  Google Scholar 

  • Atolia M, Buffie EF (2007) Reverse shooting made easy: automating the search for the global nonlinear saddle path, August

  • Barbier EB (2000) Valuing the environment as input: review of applications to mangrove-fishery linkages. Ecol Econ 35: 47–61

    Article  Google Scholar 

  • Barbier EB (2003) Habitat-fishery linkages and mangrove loss in Thailand. Contempor Econ Policy 21(1): 59–77

    Article  Google Scholar 

  • Barbier EB, Strand I (1998) Valuing mangrove-fishery linkages: a case study of Campeche, Mexico. Environ Resour Econ 12: 151–166

    Article  Google Scholar 

  • Batabyal AA (2002) Human actions, the survival of keystone species, and the resilience of ecological-economic systems. Resour Policy 28: 153–157

    Article  Google Scholar 

  • Bjorndal T, Conrad JM (1987) The dynamics of an open access fishery. Can J Econ 20(1): 74–85

    Article  Google Scholar 

  • Botsford LW, Castilla JC, Peterson CH (1997) The management of fisheries and marine ecosystems. Science 277: 509–515

    Article  Google Scholar 

  • Brock WA, De Zeeuw A (2002) The repeated lake game. Econ Lett 76: 109–114

    Article  Google Scholar 

  • Brock WA, Starrett D (2003) Managing systems with non-convex positive feedback. Environ Resour Econ 26: 575–602

    Article  Google Scholar 

  • Carpenter SR, Ludwig WA, Brock D (1999) Management of eutropication for lakes subjects to potentially irreversible change. Ecol Appl 9: 751–771

    Article  Google Scholar 

  • Christensen V, Pauly D (1998) Changes in models of aquatic ecosystems approaching carrying capacity. Ecol Appl 1: S104–S109

    Google Scholar 

  • Clark C (1976) Mathematical bioeconomics. Wiley, New York

    Google Scholar 

  • Collie JS, Hall SJ, Kaiser MJ, Poiner IR (2000) A quantitative analysis of fishing impacts on shelf-sea benthos. J Anim Ecol 69: 785–798

    Article  Google Scholar 

  • Crépin A-S (2007) Using fast and slow processes to manage resources with thresholds. Environ Resour Econ 36: 191–213

    Article  Google Scholar 

  • Eaton JW, Bateman D, Hauberg S (2008) GNU octave manual version 3. Network Theory Limited, Bristol

    Google Scholar 

  • Finnoff D, Tschirhart J (2003) Harvesting in an eight-species ecosystem. J Environ Econ Manage 45(3): 589–611

    Article  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35: 557–581. doi:10.1146/annurev.ecolsys.35.021103.105711

    Article  Google Scholar 

  • Guttormsen AG, Kristofersson D, Naevdal E (2008) Optimal management of renewable resources with darwinian selection induced by harvesting. J Environ Econ Manage 56: 167–179

    Article  Google Scholar 

  • Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress Oceanogr 47: 103–145

    Article  Google Scholar 

  • Holland D, Schnier KE (2006) Individual habitat quotas for fisheries. J Environ Econ Manage 51: 72–92

    Article  Google Scholar 

  • Hopfenberg R (2003) Human carrying capacity is determined by food availability. Popul Environ 25(2): 109–117

    Article  Google Scholar 

  • Janssen MA, Anderies JM, Walker BH (2004) Robust strategies for managing rangelands with multiple stable attractors. J Environ Econ Manage 47: 140–162

    Article  Google Scholar 

  • Knowler D, Barbier EB, Strand I (2002) An open-access model of fisheries and nutrient enrichment in the Black Sea. Mar Resour Econ 16: 195–217

    Google Scholar 

  • Kramer DB (2008) Adaptive harvesting in a multiple-species coral-reef food web. Ecol Soc 13(1): 17

    Google Scholar 

  • Lindholm PJ, Auster JB, Ruth M, Kaufman L (2001) Modeling the effects of fishing and implications for the design of marine protected areas: juvenile fish repsonses to variations in seafloor habitat. Conserv Biol 15: 424–437

    Article  Google Scholar 

  • Meyer PS, Ausubel JH (1999) Carrying capacity: a model with logistically varying limits. Technol Forecast Social Change 61(3): 209–214

    Article  Google Scholar 

  • Mäler KG, Xepadadeas A, De Zeeuw A (2003) The economics of shallow lakes. Environ Resour Econ 26: 603–624

    Article  Google Scholar 

  • Muradian R (2001) Ecological thresholds: a survey. Ecol Econ 38: 7–24

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164(3877): 262

    Article  Google Scholar 

  • R Development Core Team R (2008) a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. URL:http://www.R-project.org. ISBN 3-900051-07-0

  • Rosser BJ Jr. (2001) Complex ecological–economic dynamics and environmental policy. Ecol Econ 37: 23–37

    Article  Google Scholar 

  • Sanchirico JN, Wilen JE (2001) Dynamics of spatial exploitation: a metapopulation approach. Nat Resour Model 14(3): 391–418

    Article  Google Scholar 

  • Scheffer M, Brock W, Westely F (2000) Socioeconomic mechanisms preventing optimum use of ecosystem services: an interdisciplinary theoretical analysis. Ecosystems 3: 451–471

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (1997) Catastropich shifts in ecosystems. Nature 413: 591–596

    Article  Google Scholar 

  • Scheffer M (2004) Ecology of shallow lakes. Kluwer, Dordrecht

    Google Scholar 

  • Skiba AK (1978) Optimal growth with a convex-concave production function. Econometrica 46(3): 527–539

    Article  Google Scholar 

  • Sterner T (2007) Unobserved diversity, depletion and irreversibility: the importance of subpopulations for management of cod stocks. Ecol Econ 61: 566–574

    Article  Google Scholar 

  • Ströbele WJ, Wacker H (1995) The economics of harvesting predator-prey systems. J Econ 61: 65–81

    Article  Google Scholar 

  • Sumaila UR, Guénette S, Alder J, Chuenpagdee R (2000) Addressing ecosystem effects of fishing using marine protected areas. ICES J Mar Sci 57: 752–760

    Article  Google Scholar 

  • Wacker H (1999) Optimal harvesting of mutualistic ecological systems. Resour Energy Econ 21: 89–102

    Article  Google Scholar 

  • Wagener FOO (2003) Skiba points and heteroclinic bifurcations, with applications to the shallow lake system. J Econ Dyn Control 27: 1533–1561

    Article  Google Scholar 

  • Willemsen J (1980) Fishery-aspects of eutrophication. Aquat Ecol 14(1): 12–21

    Google Scholar 

  • Wirl F (2004) Thresholds in concave renewable resource models. Ecol Econ 48: 259–267

    Article  Google Scholar 

  • Zeeman, EC (ed) (1977) Catastrophe theory: selected papers, 1972–1977. Addison-Wesley, Reading

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannus A. Janmaat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janmaat, J.A. Fishing in a Shallow Lake: Exploring a Classic Fishery Model in a Habitat with Shallow Lake Dynamics. Environ Resource Econ 51, 215–239 (2012). https://doi.org/10.1007/s10640-011-9495-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-011-9495-5

Keywords

Navigation