Skip to main content
Log in

Environmental Liability Law and Induced Technical Change – The Role of Discounting

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

We analyse the incentives of environmental liability law for inducing progress to emission abatement technology. We consider three liability rules: strict liability, a negligence rule with an emission norm as the due care standard, and a double negligence rule which combines the emission standard with an abatement technology norm. In the case of distortive discounting, i.e. where the private discount rate deviates from the social one, we show, how the level of distortion influences the ranking of liability rules, according to the criterion of generated social cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronsson Th., Johansson P.-O., Löfgren K.-G. (1997) Welfare Measurement, Sustainability and Green National Accounting – A Growth Theoretical Approach. Edward Elgar, Cheltenham

    Google Scholar 

  • Benzion U., Rapoport A., Yagil J. (1989) Discount Rates Inferred from Decisions: An Experimental Study. Management Science 35: 270–284

    Article  Google Scholar 

  • Brown J. P. (1973) Toward an Economic Theory of Liability. Journal of Legal Studies 2: 323–349

    Article  Google Scholar 

  • Cooter R., Ulen T. (2004) Law and Economics. Pearson/Addison-Wesley, Boston

    Google Scholar 

  • Curtis J. A. (2002) Estimates of Fishermen’s Personal Discount Rate. Applied Economics Letters 9: 775–778

    Article  Google Scholar 

  • Dasgupta P. (2001) Human Well-Being and the Natural Environment. Oxford University Press, Oxford

    Google Scholar 

  • Downing P. B., White L. J. (1986) Innovation in Pollution control. Journal of Environmental Economics and Management 13: 18–29

    Article  Google Scholar 

  • Endres A. (1989) The Search for Effective Pollution Control Policies. In: Botkin D. et al. (eds) Changing the Global Environment, Perspectives on Human Involvement. Academic Press Inc., Boston, 439–454

    Google Scholar 

  • Evans D. J. (2005) The Elasticity of Marginal Utility of Consumption: Estimates for 20 OECD Countries. Fiscal Studies 26: 197–224

    Article  Google Scholar 

  • Evans D. J., Sezer H. (2004) Social Discount Rates for Six Major Countries. Applied Economics Letters 11: 557–560

    Article  Google Scholar 

  • Evans D. J., Sezer H. (2005) Social Discount Rates for Member Countries of the European Union. Journal of Economic Studies 32: 47–53

    Article  Google Scholar 

  • Faure M., Skogh G. (2003) The Economic Analysis of Environmental Policy and Law. E. Elgar, Cheltenham

    Google Scholar 

  • Gollier C. (2002) Discounting an Uncertain Future. Journal of Public Economics 85: 149–166

    Article  Google Scholar 

  • Groom B., Hepburn C., Koundouri P., Pearce D. (2005) Declining Discount Rates: The Long and the Short of it. Environmental & Resource Economics 32: 445–493

    Article  Google Scholar 

  • Hahn R. W., Stavins R. N. (1991) Incentive based Environmental Regulation: A new Era from an old Idea? Ecology Law Quarterly 18: 1–42

    Google Scholar 

  • Harrison G. W., Lau M. I., Williams M. B. (2002) Estimating Individual Discount Rates in Denmark: A Field Experiment. American Economic Review 92: 1606–1617

    Article  Google Scholar 

  • Hecker, R. (2000): Regulierung von Unternehmensübernahmen und Konzernrecht, Teil I: Empirische Analyse des aktienrechtlichen Minderheitenschutzes im Vertragskonzern, Gabler, Wiesbaden

  • Heidug W. K., Bertram R. (2004) Environmental Policy, Induced Technological Change, and Economic Growth: a Selective Review. In: Tietenberg T., Folmer H. (eds) The International Yearbook of Environmental and Resource Economics, 2004/2005. E. Elgar, Cheltenham, pp. 61–100

    Google Scholar 

  • Jaffe A. B., Newell R. G., Stavins R. N. (2002) Environmental Policy and Technological Change. Environmental and Resource Economics 22: 41–69

    Article  Google Scholar 

  • Kolstad Ch. D. (2000) Environmental Economics. OUP, Oxford

    Google Scholar 

  • Lind R. C. et al. (1982) Discounting for Time and Risk in Energy Policy. Resources for the Future, Washington, DC

    Google Scholar 

  • Milliman S. R., Prince R. (1989) Firm incentives to promote technological change in pollution control. Journal of Environmental Economics and Management 17: 247–265

    Article  Google Scholar 

  • Pearce D., Groom B., Hepburn C., Koundouri P. (2003) Valuing the future. World Economics 4: 121–141

    Google Scholar 

  • Portney P. R., Weyant J. P. (1999) Discounting and intergenerational equity. Resources for the Future, Washington, DC

    Google Scholar 

  • Requate T. (2005) Dynamic Incentives by Environmental Policy Instruments – a Survey. Ecological Economics 54: 175–195

    Article  Google Scholar 

  • Schäfer H.-B., Ott C. (2004) Economic Analysis of Civil Law. E. Elgar, Cheltenham

    Google Scholar 

  • Shavell S. (1987) Economic Analysis of Accident Law. Harvard University Press, Cambridge/Mass., London

    Google Scholar 

  • Shavell S. (2004) Foundations of Economic Analysis of Law. Harvard University Press, Cambridge/Mass., London

    Google Scholar 

  • Stehle R. (2004) Die Festlegung der Risikoprämie von Aktien im Rahmen der Schätzung des Wertes von börsennotierten Kapitalgesellschaften. Die Wirtschaftsprüfung 57: 906–927

    Google Scholar 

  • Weitzman M. (1994) On the “Environmental” Discount Rate. Journal of Environmental Economics and Management 26: 200–209

    Article  Google Scholar 

  • Weitzman M. (1998) Why the Far Distant Future should be Discounted at its Lowest Rate. Journal of Environmental Economics and Management 36: 201–208

    Article  Google Scholar 

  • Weitzman M. (2001) Gamma discounting. American Economic Review 91: 261–271

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to three anonymous referees as well as to Th. Hering, U. Terstege, University of Hagen, and K. Walker, University of Hamburg, for their helpful comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Endres.

Appendices

Appendix A1 – Derivation of dX 1/dI 0, dX 1/dr and dI 0/dr

Total derivation of (2.2) with respect to I 0 yields:

$$\frac{dX_1}{dI_0}=-\frac{\partial^2C_1 (X_1, I_0)/\partial X_1 \partial I_0}{\partial ^2C_1 (X_1 ,I_0)/\partial X_1^2 +D^{\prime\prime}(X_1)}\,>\, 0.$$

Total differentiation of (2.2) and (2.3) with respect to r, applying Cramer’s rule and using the first-order conditions, yields:

$$\frac{dX_1}{dr}=\frac{\partial ^2C_1 (X_1 ,I_0)/\partial X_1 \partial I_0}{\left({\partial ^2C_1 (X_1, I_0)/\partial I_0^2 \left({\partial^2C_1(X_1, I_0)/\partial X_1^2 +D^{\prime\prime}(X_1)} \right)-\left({\partial ^2C_1 (X_1,I_0)/\partial X_1 \partial I_0}\right)^2}\right)}\,<\, 0$$

Total differentiation of (2.3) with respect to r (using the first-order conditions) yields:

$$\frac{dI_0}{dr}=-\frac{\partial^2C_1 (X_1, I_0)/\partial X_1 \partial I_0 ({dX_1}/{dr})+1}{\partial^2C_1 (X_1, I_0)/\partial I_0^2}\,<\, 0$$

For a given \(X_1 (=\overline{X}_1\) in case of the negligence rule) dX 1/dr = 0 holds and hence

$$\frac{dI_0}{dr}=-\frac{1}{\partial ^2C_1 (X_1 ,I_0)/\partial I_0^2 }\,<\, 0.$$

That is, the investment level of period 0 decreases under both liability rules, when the discount rate increases.

Appendix A2 – Simple Negligence

1. \(\frac{dI_0^\ast}{d\overline{X}_1}\) (if the firm complies with the standard)

Total differentiation of (7) yields \(\frac{dI_0^\ast}{d\overline{X}_1}=-{\frac{\partial ^2C_1 (\overline{X}_1,I_0^\ast)}{\partial X_1\partial I_0}} \mathord{\left/ {\vphantom {{\frac{\partial ^2C_1 (\overline{X}_1, I_0^\ast)}{\partial X_1 \partial I_0}} {\frac{\partial ^2C_1 (\overline{X}_1,I_0^\ast)}{\partial I_0^2}}}} \right. \kern-\nulldelimiterspace} {\frac{\partial ^2C_1 (\overline{X}_1,I_0^\ast)}{\partial I_0^2}}\,>\, 0\)

2. \(I_{_0}^\ast (\overline{X}_1)+\frac{C_1 (\overline{X}_{_1},I_0^\ast (\overline{X}_1))}{1+r^\ast}\,<\, I_{_0}^{\ast {\rm SL}} +\frac{C_1 (X_{_1}^{\ast {\rm SL}}, I_0^{\ast {\rm SL}})+D(X_1^{\ast {\rm SL}})}{1+r^\ast}\) holds for \(\overline{X}_1 =X_1^{\ast {\rm SL}} +\varepsilon \) with ɛ → 0

The statement follows from \(\lim\limits_{\varepsilon\to 0} I_0^\ast (X_1^{\ast {\rm SL}} +\varepsilon)=I_0^{\ast {\rm SL}} \) and hence

$$\lim_{\varepsilon\to 0} \left({I_{0}^\ast (\overline{X}_1)+\frac{C_1 (\overline{X}_{1},I_0^\ast (\overline{X}_1))}{1+r^\ast}} \right)=I_{0}^{\ast {\rm SL}} +\frac{C_1 (X_{1}^{\ast {\rm SL}}, I_0^{\ast {\rm SL}})}{1+r^\ast}< I_{_0}^{\ast {\rm SL}} +\frac{C_1 (X_{1 }^{\ast {\rm SL}}, I_0^{\ast {\rm SL}})+D(X_1^{\ast {\rm SL}})}{1+r^\ast}.$$

3. \(\hbox{SC}^{\rm N}(\overline{X}_1)> \hbox{SC}^{\rm N}(X_1^{\ast {\rm SL}})=\hbox{SC}^{\rm SL}(X_1^{\ast {\rm SL}})\ \forall\ \overline{X}_1< X_1^{\ast {\rm SL}}\)

$$\eqalign{ \hbox{SC}^{\rm N}(X_1^{\ast {\rm SL}}, I_0^{\ast {\rm SL}})=\hbox{SC}^{\rm SL}(X_1^{\ast {\rm SL}}, I_0^{\ast {\rm SL}}) =\frac{C_1(X_{_1}^{\ast {\rm SL}}, I_0^{\ast {\rm SL}})}{(1+r^{\ast\ast})} +I_0^{\ast {\rm SL}} +\frac{D(X_1^{\ast {\rm SL}})}{(1+r^{\ast\ast})}\cr =I_0^{\ast {\rm SL}} +\frac{C_1 (X_{_1}^{\ast {\rm SL}}, I_0^{\ast {\rm SL}})}{(1+r^\ast)}+\frac{D(X_1^{\ast {\rm SL}})}{(1+r^\ast)}\cr \quad+\left( {\frac{1}{1+r^{\ast\ast }}-\frac{1}{1+r^\ast}} \right)\left( {C_1 (X_{_1}^{\ast {\rm SL}} ,I_0^{\ast {\rm SL}} )+D(X_1^{\ast {\rm SL}})} \right)\cr \quad<\left( {I_0^\ast (\overline{X}_1)+\frac{C_1 (\overline{X}_{_1},I_0^\ast (\overline{X}_1))}{(1+r^\ast)}+\frac{D(\overline{X}_1)}{(1+r^\ast)}} \right)\cr \quad+\left( {\frac{1}{1+r^{\ast\ast}}-\frac{1}{1+r^\ast}} \right)\left( {C_1 (X_{_1 }^{\ast {\rm SL}} ,I_0^{\ast {\rm SL}})+D(X_1^{\ast {\rm SL}})} \right) }$$

Hence we still have to show \(\left( {C_1 (X_{_1}^{\ast {\rm SL}}, I_0^{\ast {\rm SL}} )+D(X_1^{\ast {\rm SL}})} \right)\le \left( {C_1 (\overline{X}_{_1},I_0^\ast (\overline{X}_1))+D(\overline{X}_1)} \right)\)

$$\Leftrightarrow I_0^{\ast {\rm SL}} +\frac{C_1 (X_{_1}^{\ast {\rm SL}}, I_0^{\ast {\rm SL}} )+D(X_1^{\ast {\rm SL}})}{1+r^\ast}\le I_0^{\ast {\rm SL}} +\frac{C_1 (\overline{X}_{_1},I_0^\ast (\overline{X}_1))+D(\overline{X}_1)}{1+r^\ast}$$

which follows from

$$\eqalign{ I_0^{\ast {\rm SL}} +\frac{C_1 (X_{_1}^{\ast {\rm SL}} ,I_0^{\ast {\rm SL}})+D(X_1^{\ast {\rm SL}} )}{1+r^\ast}=\min_{(X_1,I_0)} \left( {I_0+\frac{C_1 (X_{1} ,I_0)+D(X_1)}{1+r^\ast}} \right)\cr \quad< I_0^{\ast {\rm SL}} +\frac{C_1 (\overline{X}_{_1},I_0^{\ast {\rm SL}})+D(\overline{X}_1)} {1+r^\ast} \,<\, I_0^{\ast {\rm SL}} +\frac{C_1 (\overline{X}_{1},I_0^\ast (\overline{X}_1))+D(\overline{X}_1)}{1+r^\ast} }$$

4. For \(\overline{X}_1 =X_1^{\ast {\rm SL}} +\varepsilon \) with ɛ sufficiently small, \(\frac{d{\rm SC}^{\rm N}}{d\overline{X}_1 }\,<\, 0\) holds

Because of the continuity of \(\frac{d{\rm SC}^{\rm N}}{d\overline{X}_1}\), it suffices to show that \(\frac{d{\rm SC}^{\rm N}}{d\overline{X}_1}\,<\, 0\) holds for \(\overline{X}_1 =X_1^{\ast {\rm SL}} \).

$$\frac{d\hbox{SC}^{\rm N}}{d\overline{X}_1} =\frac{dI_0^\ast (\overline{X}_1)}{d\overline{X}_1}+\frac{1}{1+r^{\ast\ast }}\left( {\frac{\partial C_1 (\overline{X}_{_1},I_0^\ast (\overline{X}_1 ))}{\partial X_1}-(1+r^\ast)\frac{dI_0^\ast (\overline{X}_1)}{d\overline{X}_1 }+D^{\prime}(\overline{X}_1)} \right)$$

Hence, for \(\overline{X}_1 =X_1^{\ast {\rm SL}}\) we have

$$\frac{d\hbox{SC}^{\rm N}}{d\overline{X}_1}(X_1^{\ast {\rm SL}})=\underbrace {\left( {1-\frac{1+r^\ast}{1+r^{\ast\ast}}} \right)}_{< 0}\underbrace {\frac{dI_0^\ast (X_1^{\ast {\rm SL}})}{d\overline{X}_1}}_{> 0}+\frac{1}{1+r^{\ast \ast}}\underbrace {\left( {\frac{\partial C_1 (X_{_1}^{\ast {\rm SL}} ,I_0^{\ast {\rm SL}})}{\partial X_1}+D^{\prime}(X_1^{\ast {\rm SL}})} \right)}_{=0}\,<\, 0.$$

5. \(\overline{X}_1 =X_1^{\ast\ast} \mathop{>}\limits_{(=)} X_1^{\ast {\rm SL}} \Rightarrow I_0^{\ast {\rm SL}} \mathop{<}\limits_{(=)} I_0^\ast (\overline{X}_1)\mathop{<}\limits_{(=)} I_0^{\ast\ast}\) if \(r^\ast \mathop{>}\limits_{(=)} r^{\ast\ast}\)

$$I_0^\ast \mathop {<}\limits_{(=)} I_0^{\ast\ast} \hbox{ follows from } \frac{\partial C_1 (X_1^{\ast\ast} ,I_0^\ast)}{\partial I_0 }=-(1+r^\ast)\mathop{<}\limits_{(=)} -(1+r^{\ast\ast})=\frac{\partial C_1 (X_1^{\ast\ast} ,I_0^{\ast \ast})}{\partial I_0}.$$
$$I_0^{\ast {\rm SL}} \mathop{<}\limits_{(=)} I_0^\ast\hbox{ follows from } \frac{\partial C_1 (X_1^{\ast\ast}, I_0^\ast)}{\partial I_0}=-(1+r^\ast)=\frac{\partial C_1 (X_1^{\ast {\rm SL}} ,I_0^{\ast {\rm SL}})}{\partial I_0}\mathop{>}\limits_{(=)} \frac{\partial C_1 (X_1^{\ast\ast}, I_0^{\ast {\rm SL}})}{\partial I_0}.$$

6. Comparison of X * N1 and X **1

First note that if (8) is violated for \(\overline{X}_1 =X_1^{\ast\ast} \) the optimal standard is smaller than X **1 . Thus, we have \(X_1^{\ast {\rm N}} < X_1^{\ast\ast}\).

In the following we assume that (8) holds for \(\overline{X}_1 =X_1^{\ast\ast}\) and consider \(\frac{d{\rm SC}^{\rm N}}{d\overline{X}_1}(X^{\ast \ast})\).

$$\eqalign{ \hbox{SC}(\overline{X}_1)=I_0^\ast (\overline{X}_1)+\frac{C_1 (\overline{X}_1 ,I_0^\ast (\overline{X}_1))+D_1 (\overline{X}_1)}{1+r^{\ast\ast}}\cr \frac{d{\rm SC}}{d\overline{X}_1}(X_1^{\ast\ast})=\underbrace {\frac{dI_0^\ast }{d\overline{X}_1}(X_1^{\ast\ast})}_{> 0}\underbrace {\left( {1+\frac{\frac{\partial C_1}{\partial I_0}(X_1^{\ast\ast} ,I_0^\ast (X_1^{\ast\ast}))}{1+r^{\ast\ast}}} \right)}_{< 0\;(\hbox{see}\;\hbox{below})}\cr \qquad\qquad\quad+\frac{1}{1+r^{\ast\ast }}\underbrace {\left( {\frac{\partial C_1}{\partial X_1}(X_1^{\ast \ast} ,I_0^\ast (X_1^{\ast\ast}))+D^{\prime}(X_1^{\ast\ast})} \right)}_{> 0\;(\hbox{see}\;\hbox{below})} }$$

We have

$$1+\frac{\frac{\partial C_1}{\partial I_0}(X_1^{\ast\ast} ,I_0^\ast (X_1^{\ast\ast})}{1+r^{\ast\ast}})> 1+\frac{\frac{\partial C_1}{\partial I_0}(X_1^{\ast\ast} ,I_0^\ast (X_1^{\ast \ast}))}{1+r^\ast }=0$$

and

$$\frac{\partial C_1}{\partial X_1}(X_1^{\ast\ast}, I_0^\ast (X_1^{\ast\ast}))+D^{\prime}(X_1^{\ast\ast})> \frac{\partial C_1}{\partial X_1 }(X_1^{\ast\ast}, I_0^{\ast \ast})+D^{\prime}(X_1^{\ast\ast})=0.$$

Thus, the first product term is negative and the second positive. Hence, the sign of \(\frac{d{\rm SC}}{d\overline{X}_1}(X_1^{\ast\ast})\) cannot be determined on this general level.

Evaluation of typical functional forms reveals that either \(\frac{d{\rm SC}}{d\overline{X}_1}(X_1^{\ast\ast})=0\) or \(\frac{d{\rm SC}}{d\overline{X}_1}(X_1^{\ast\ast} )> 0\) , and hence either \(X_1^{\ast {\rm N}} =X_1^{\ast\ast} \) or \(X_1^{\ast {\rm N}} < X_1^{\ast\ast} \) , holds for the tested functions.

E.g., \(\frac{d{\rm SC}}{d\overline{X}_1}(X_1^{\ast\ast})=0\) holds for \((C_1 =\frac{1}{2}\frac{\alpha X_1^2}{e^{\beta I_0}},D=\frac{\gamma}{X_1^\delta })\), \((C_1 =\frac{1}{2}\frac{\alpha X_1^3}{e^{\beta I_0}},D=\frac{\gamma }{X_1^\delta})\) or \((C_1 =e^{\alpha X_1 -\beta I_0},D=\frac{\gamma }{X_1^\delta})\) and \(\frac{d{\rm SC}}{d\overline{X}_1}(X_1^{\ast\ast})> 0\) holds for \((C_1 =\frac{e^{\alpha X_1}}{(I_0 +1)^\beta},D=\frac{\gamma}{X_1})\).

Appendix A3 – Double Negligence

1. Proposition A3.1 Existence and Uniqueness of \(\hat{r}^\ast\)

(a) Let \(\hat{r}^\ast\) be the smallest discount rate, which satisfies equation (10). Then the firm complies with both standards for all \(r^{\ast\ast}< r^\ast<\hat{r}^\ast\).

(b) For all \(r^\ast >\hat {r}^\ast\) the private cost of the firm is lower if it ignores the standards than if it respects them.

(c) The critical discount rate \(\hat{r}^\ast \) is finite.

Proof: The difference between the firms’ costs if it ignores the standards (PCSL), and the firms costs if it respects the socially optimal standards ( \(\hbox{PC}^{\rm NN}(X_1^{\ast\ast}, I_0^{\ast\ast}))\), is given by

$$\Delta (r^\ast)=\frac{C_1 (X_1^{\ast {\rm SL}} (r^\ast),I_0^{\ast {\rm SL}} (r^\ast ))}{(1+r^\ast)}+I_0^{\ast {\rm SL}} (r^\ast)+\frac{D(X_1^{\ast {\rm SL}} (r^\ast ))}{(1+r^\ast)}-\left[ {\frac{C_1 (X_1^{\ast\ast} ,I_0^{\ast\ast})}{(1+r^\ast)}+I_0^{\ast\ast}} \right].$$

(a) Follows from Δ (r **) > 0 and the continuity of Δ.

(b) Total differentiation of Δ with respect to r * (taking (2.2) and (4) into account) yields:

$$\eqalign{\frac{d\Delta}{dr^\ast}= -\frac{C_1 (X_1^{\ast {\rm SL}}, I_0^{\ast {\rm SL}} )}{(1+r^\ast)^2}+\frac{\partial C_1 (\cdot)/\partial X_1\frac{dX_1^{\ast {\rm SL}}}{dr^\ast}+\partial C_1 (\cdot)/\partial I_0\frac{dI_0^{\ast {\rm SL}} }{dr^\ast}}{(1+r^\ast)}-\frac{D(X_1^{\ast {\rm SL}})}{(1+r^\ast )^2}\cr +\frac{D^{\prime}(X_1^{\ast {\rm SL}})\frac{dX_1^{\ast {\rm SL}}}{dr^\ast}}{(1+r^\ast )}+\frac{dI_0^{\ast {\rm SL}}}{dr^\ast}+\frac{C_1 (X_1^{\ast\ast} ,I_0^{\ast\ast})}{(1+r^\ast)^2} \cr =\frac{1}{(1+r^\ast)^2}\left( {-C_1 (X_1^{\ast {\rm SL}}, I_0^{\ast {\rm SL}} )-D(X_1^{\ast {\rm SL}})+C_1 (X_1^{\ast\ast}, I_0^{\ast\ast})} \right).}$$

Hence, we have \(\frac{d\Delta}{dr^\ast}< 0\Leftrightarrow A< 0\) with \(A:=C_1 (X_1^{\ast\ast}, I_0^{\ast\ast})-\left( {C_1 (X_1^{\ast {\rm SL}}, I_0^{\ast {\rm SL}})+D(X_1^{\ast {\rm SL}})} \right)\).

A <  0 means that the costs of the firm in period 1 are lower if it respects the standards than if it ignores them. Since investment costs in period 0 are higher in the case of compliance with the standard, this implies that A < 0 is a necessary condition for compliance with the standards. For \(r^\ast =\hat {r}^\ast \) from (9) it follows that Δ = 0 and A < 0 holds. Hence, a marginal increase of the private discount rate ( \(r^\ast =\hat {r}^\ast +\varepsilon)\) implies a breach of the standard. A further increase of the discount rate might increase Δ. However, Δ can never become positive, since the necessary condition for the acceptance of the standard (A < 0) is violated in the increasing range of Δ.

(c) Considering the limit \(\lim\limits_{r^\ast \to \infty} \Delta =-I_0^{\ast\ast}\) shows that, for a sufficiently large discount rate, the firm is always better off if it violates the two standards. (q.e.d.)

2. Proposition A3.2 Optimal standards in case of \(r^\ast>\hat{r}^\ast\)

If\(r^\ast >\hat {r}^\ast \), for the second best norms\((\overline{X}_1^{\ast\ast}, \overline{I}_0^{\ast\ast})\)the following relationships hold:\(\overline{X}_1^{\ast\ast}< X_1^{\ast\ast}, \overline{I}_0^{\ast\ast} < I_0^{\ast\ast}\).

Proof: (1) If \(r^\ast >\hat {r}^\ast\) the regulator has to choose second best norms \((\overline{X}_{1}^{\ast\ast}, \overline{I}_0^{\ast\ast})\) which minimise social cost under the constraint

(*) \(I_{_0}^\ast (\overline{X}_1^{\ast\ast})+\frac{C_1 (\overline{X}_{_1}^{\ast\ast} ,\overline{I}_0^{\ast\ast})}{1+r^\ast}=I_{_0}^{\ast {\rm SL}} +\frac{C_1 (X_{_1}^{\ast {\rm SL}} ,I_0^{\ast {\rm SL}})+D(X_1^{\ast SL})}{1+r^\ast}\).

(2) A necessary condition for (*) is given by \(\left( {\overline{X}_1^{\ast\ast } < X_1^{\ast\ast} \;\hbox{or}\;\;\overline{I}_0^{\ast \ast} < I_0^{\ast\ast} } \right)\)

(3) First, we show that for the equilibrium pair of standards \(\overline{X}_1^{\ast\ast} < X_1^{\ast\ast}\hbox{and }\overline{I}_0^{\ast\ast} \geq I_0^{\ast\ast}\) cannot hold, since (given \(\overline{X}_1^{\ast \ast})\) lowering \(\overline{I}_0 \) reduces private and social cost:

$$\eqalign{ \hbox{SC}^{\rm NN}(\overline{I}_0)=\overline{I}_0+\frac{C_1 (\overline{X}_{_1}^{\ast\ast}, \overline{I}_0)+D(\overline{X}_1^{\ast\ast})}{1+r^{\ast\ast}},\hbox{PC}^{\rm NN}(\overline{I}_0)=\overline{I}_0+\frac{C_1 (\overline{X}_{_1}^{\ast\ast},\overline{I}_0)}{1+r^\ast},\cr \frac{d\hbox{SC}^{\rm NN}(\overline{I}_0^{\ast\ast})}{d\overline{I}_0} =1+\frac{\frac{\partial C_1}{\partial I_0}(\overline{X}_{_1}^{\ast\ast}, \overline{I}_0^{\ast\ast})}{1+r^{\ast\ast}}> 1+\frac{\frac{\partial C_1 }{\partial I_0}(X_{_1}^{\ast\ast}, \overline{I}_0^{\ast\ast})}{1+r^{\ast\ast}}> 1+\frac{\frac{\partial C_1}{\partial I_0}(X_{_1}^{\ast\ast}, I_0^{\ast \ast})}{1+r^{\ast\ast}}=0,\cr \frac{d\hbox{PC}^{\rm NN}(\overline{I}_0^{\ast \ast})}{d\overline{I}_0 }=1+\frac{\frac{\partial C_1}{\partial I_0}(\overline{X}_{_1}^{\ast\ast} ,\overline{I}_0^{\ast \ast})}{1+r^\ast}> 1+\frac{\frac{\partial C_1}{\partial I_0}(X_{_1}^{\ast\ast} ,I_0^{\ast\ast})}{1+r^\ast }> 1+\frac{\frac{\partial C_1}{\partial I_0}(X_{_1}^{\ast\ast}, I_0^{\ast\ast})}{1+r^{\ast\ast}}=0, }$$
(4)

  (4) From (2) and (3) follows \(\overline{I}_0^{\ast\ast} < I_0^{\ast\ast}\).

(5) In the following we proof \(\overline{X}_1^{\ast\ast} < X_1^{\ast\ast}\) by contradiction, assuming \(\overline{X}_1^{\ast\ast} \geq X_1^{\ast\ast } \).

$$(\overline{X}_1^{\ast\ast}, \overline{I}_0^{\ast\ast})=\hbox{argmin}\;\left( {I_0 +\frac{C_1 (X_1 ,I_0)+D(X_1)}{1+r^{\ast\ast}}} \right)\;\hbox{w.r.t.}\;\left( {I_0 +\frac{C_1 (X_1 ,I_0)}{1+r^\ast}=\hbox{PC}^{\rm SL}} \right).$$

Using the Lagrange-approach we get the following first order conditions:

$$\eqalign{1+\frac{\frac{\partial C_1}{\partial I_0}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast})}{1+r^{\ast\ast}}-\lambda \left( {1+\frac{\frac{\partial C_1}{\partial I_0}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast})}{1+r^\ast}} \right)=0 \hbox{ and}\cr \frac{\frac{\partial C_1}{\partial X_1}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast})+D^{\prime}(\overline{X}_1^{\ast\ast})}{1+r^{\ast\ast }}-\lambda \frac{\frac{\partial C_1}{\partial X_1}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast})}{1+r^\ast}=0 }$$

Hence, it follows that:

$$\eqalign{ \frac{1+r^{\ast\ast}+\frac{\partial C_1}{\partial I_0}(\overline{X}_1^{\ast \ast} ,\overline{I}_0^{\ast\ast})}{1+r^\ast +\frac{\partial C_1}{\partial I_0}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast} )}=\frac{\frac{\partial C_1}{\partial X_1}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast})+D^{\prime}(\overline{X}_1^{\ast\ast})}{\frac{\partial C_1 }{\partial X_1}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast})}\cr \Leftrightarrow \frac{r^\ast -r^{\ast\ast}}{1+r^\ast +\frac{\partial C_1 }{\partial I_0}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast} )}=\frac{-D^{\prime}(\overline{X}_1^\ast)}{\frac{\partial C_1}{\partial X_1}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast})} }$$

Left term:

$$\eqalign{\frac{r^\ast -r^{\ast\ast}}{1+r^\ast +\frac{\partial C_1}{\partial I_0 }(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast})}>\frac{r^\ast -r^{\ast \ast}}{1+r^\ast +\frac{\partial C_1}{\partial I_0}(\overline{X}_1^{\ast\ast } ,I_0^{\ast\ast})}>\frac{r^\ast -r^{\ast\ast}}{1+r^\ast +\frac{\partial C_1}{\partial I_0}(X_1^{\ast\ast} ,I_0^{\ast\ast} )}\cr \quad=\frac{r^\ast -r^{\ast\ast}}{1+r^\ast -(1+r^{\ast\ast})}=1}$$

Right term:

$$\frac{-D^{\prime}(\overline{X}_1^\ast)}{\frac{\partial C_1}{\partial X_1}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast\ast})}\le \frac{-D^{\prime}(X_1^{\ast\ast})}{\frac{\partial C_1}{\partial X_1}(\overline{X}_1^{\ast\ast} ,\overline{I}_0^{\ast \ast})}<\frac{-D^{\prime}(X_1^{\ast\ast} )}{\frac{\partial C_1}{\partial X_1}(X_1^{\ast\ast} ,\overline{I}_0^{\ast \ast})}<\frac{-D^{\prime}(X_1^{\ast\ast})}{\frac{\partial C_1}{\partial X_1 }(X_1^{\ast\ast} ,I_0^{\ast\ast})}=1$$

Thus, the assumption \(\overline{X}_1^{\ast\ast} \geq X_1^{\ast\ast}\) leads to a contradiction and \(\overline{X}_1^{\ast\ast} < X_1^{\ast \ast}\) follows. (q.e.d.)

\(3.\ \hbox{SC}^{\rm NN} \,<\, \hbox{SC}^{\rm N} \)

Case i: \(r^\ast\le \hat{r}^\ast: \hbox{SC}^{\rm NN} =\hbox{SC}^{\ast\ast}\,<\, \hbox{SC}^{\rm N}\)

Case ii: \(r^\ast>\hat{r}^\ast\): Since (X * NN1 , I * N0 N) is the unique minimiser of SC(X 1, I 0) under the side constraint \(A:=\frac{C_1 (X_1, I_0)}{(1+r^*)}+I_0 -\hbox{PC}^{\rm SL}\le 0\) we have to show that \((X_1^{\ast {\rm N}}, I_0^{\ast {\rm N}})\ne (X_1^{\ast {\rm NN}}, I_0^{\ast {\rm NN}})\) with \(I_0^{\ast {\rm N}} =I_0^\ast (X_1^{\ast {\rm N}})\) holds.

Case ii.a: \(A(X_1^{\ast {\rm N}} ,I_0^{\ast {\rm N}})<0\): Due to the strict convexity of the social cost function, the regulator may decrease SC by choosing a double norm which comes closer to the socially optimal solution than \((X_1^{\ast {\rm N}} ,I_0^{\ast {\rm N}})\). That is, \(\exists\varepsilon > 0: \hbox{SC}(\tilde {X}_1 ,\tilde{I}_0)< \hbox{SC}(X_1^{\ast {\rm N}}, I_0^{\ast {\rm N}})\quad \wedge A(\tilde{X}_1, \tilde{I}_0)\le 0\) with \(\tilde {X}_1 =(1-\varepsilon)X_1^{\ast {\rm N}} +\varepsilon X_1^{\ast\ast} \) and \(\tilde {I}_0 =(1-\varepsilon)I_0^{\ast {\rm N}} +\varepsilon I_0^{\ast\ast}\).

Case ii.b: \(A(X_1^{\ast {\rm N}} ,I_0^{\ast {\rm N}})=0\): Consider the function \(X_1^A (I_0)\) implicitly defined by \(A(X_1^A ,I_0)=\frac{C_1 (X_1^A ,I_0 )}{(1+r^\ast)}+I_0 -\hbox{PC}^{\rm SL}=0\). Total differentiation of A yields:

$$\frac{dX_1^A}{dI_0}=-{\left( {\frac{\partial C_1}{\partial I_0}+1+r^\ast } \right)} \mathord{\left/ {\vphantom {{\left( {\frac{\partial C_1 }{\partial I_0}+1+r^\ast} \right)} {\frac{\partial C_1}{\partial X_1}}}} \right. \kern-\nulldelimiterspace} {\frac{\partial C_1}{\partial X_1}}.$$

Hence

$$\frac{dX_1^A}{dI_0}\left| {_{I_0^{\ast {\rm N}} =I_0^\ast (X_1^{\ast {\rm N}} )}} \right.=0.$$

Further, we have

$$\frac{d\hbox{SC}(X_1^A (I_0),I_0)}{dI_0}=\left( {\frac{1}{1+r^{\ast\ast }}\frac{\partial C_1}{\partial I_0}+1} \right)+\frac{1}{1+r^{\ast \ast }}\left( {\frac{\partial C_1}{\partial X_1}+D^{\prime}} \right)\frac{dX_1^A }{dI_0}.$$

Hence

$$\frac{d\hbox{SC}(X_1^A (I_0^{\ast {\rm N}}),I_0^{\ast {\rm N}})}{dI_0}=\frac{1}{1+r^{\ast\ast}}\frac{\partial C_1}{\partial I_0}+1=-\frac{1+r^\ast}{1+r^{\ast\ast}}+1< 0. \quad \hfill\hbox{ (q.e.d.)}$$

Appendix A4 – Example

We define \(C_0 (X_0)=\frac{1}{2}aX_0^2, C_1 (X_1 ,I_0)=\frac{1}{2}aX_1^2 e^{-I_0}\) and \(D(X_i)=\frac{c}{X_i}\), and assume \(r^{\ast\ast}\le r^\ast<<$> <$>\frac{1}{2}a^{\frac{1}{3}}c^{\frac{2}{3}}-1\) to assure inner solutions.

Evaluating the social optimum reveals \(X_0^{\ast\ast} =\left({\frac{c}{a}} \right)^{\frac{1}{3}}\) (which is chosen in all scenarios), \(X_1^{\ast\ast} =\frac{c}{2(1+r^{\ast\ast})}\) and \(I_0^{\ast\ast} =\hbox{ln}( {\frac{ac^2}{8(1+r^{\ast \ast})^3}} )\).

The equilibrium under the strict liability rule is given by \(X_1^{\ast {\rm SL}} =\frac{c}{2(1+r^\ast)}, I_0^{\ast {\rm SL}} =\ln( {\frac{ac^2}{8(1+r^\ast)^3}} )\).

For the simple negligence rule the three step procedure is illustrated through the following:

1. Let \(\overline{X}_1\) be the emission norm chosen by the social planner.

Then, from \(-(1+r^\ast)=\frac{\partial C_1 (\overline{X}_1, I_0)}{\partial I_0}=-\frac{a}{2}\overline{X}_1^2 e^{-I_0}\) it follows that \(I_0^\ast (\overline{X}_1)=\ln({\frac{a}{2}\frac{\overline{X}_1^2}{(1+r^\ast)}} )\).

2. The representative polluter complies with the norm if the following difference is non-negative:

$$\eqalign{ \left({I_{_0}^{\ast {\rm SL}} +\frac{C_1 (X_{_1}^{\ast {\rm SL}} ,I_0^{\ast {\rm SL}} )+D(X_1^{\ast {\rm SL}})}{1+r^\ast}} \right)-\left( {I_{_0}^\ast (\overline{X}_1) +\frac{C_1 (\overline{X}_{_1},I_0^\ast (\overline{X}_1))}{1+r^\ast}} \right) \cr \quad=\ln\left({\frac{c^2}{4(1+r^\ast)^2\overline{X}_1^2}} \right)+2.}$$

Hence, the polluter complies with the norm if \(\overline{X}_1\le \overline{X}_1^{\max} =\frac{ce}{2(1+r^\ast)}\).

3. For \(\overline{X}_1\le \overline{X}_1^{\max} =\frac{ce}{2(1+r^\ast)}\) the social cost is

$$\hbox{SC}^{\rm N} =\ln\left({\frac{a}{2}\frac{\overline{X}_1^2}{(1+r^\ast)}} \right)+\frac{1}{1+r^{\ast\ast}}\left( {1+r^\ast +\frac{c}{\overline{X}_1}} \right)+K \hbox{ with } K=C_0 (X_0^{\ast \ast})+D(X_0^{\ast\ast})$$
$$\frac{d\hbox{SC}^{\rm N}}{d\overline{X}_1}< 0 \Leftrightarrow \overline{X}_1<\frac{1}{1+r^{\ast\ast}}\frac{c}{2}$$

Hence, the optimal standard is

$$\overline{X}_1^{\ast\ast} =\min\left\{\frac{ce}{2(1+r^\ast )},\frac{c}{2(1+r^{\ast\ast})}\right\}=\left\{\begin{array}{l} \frac{c}{2(1+r^{\ast\ast})} \hbox{if }r^\ast \le e(1+r^{\ast\ast})-1 \cr \frac{ce}{2(1+r^\ast)}\hbox{if } r^\ast > e(1+r^{\ast\ast})-1\cr \end{array}\right.$$

The corresponding investment level is

$$I_0^\ast (\overline{X}_1^{\ast\ast}) =\ln\left( {\frac{a}{2}\frac{\overline{X}_1^2}{(1+r^\ast)}} \right)=\left\{\begin{array}{l} \ln\left(\frac{ac^2}{8(1+r^\ast)(1+r^{\ast\ast})^2}\right) \hbox{if }r^\ast \le e(1+r^{\ast\ast})-1\cr \ln \left(\frac{ac^{2}e^{2}}{8(1+r^\ast)^3}\right)\hbox{if }r^\ast > e(1+r^{\ast\ast})-1\cr \end{array}\right.$$

For the double negligence rule the three step procedure is similar to the one for the simple negligence rule.

1. Let \((\overline{X}_1, \overline{I}_0)\) be the double norm chosen by the social planner.

The polluter complies with the norm if the following difference is non-negative:

$$\eqalign{ A(\overline{X}_1, \overline{I}_0)=\left(I_{0}^{\ast {\rm SL}} +\frac{C_1 (X_{1}^{\ast {\rm SL}}, I_0^{\ast {\rm SL}})+D(X_1^{\ast {\rm SL}})}{1+r^\ast} \right)-\left(\overline{I}_{0}+\frac{C_1(\overline{X}_{1},\overline{I}_0)}{1+r^\ast}\right)\cr =\left({\ln}\left(\frac{ac^2}{8(1+r^{\ast})^3}\right)+3\right)- \left(\overline{I}_{0}+\frac{a\overline{X}_1^2}{2(1+r^{\ast} )e^{\overline{I}_0}}\right). }$$

2. The critical discount rate \(\hat{r}^\ast\) is implicitly defined by \(\frac{C_1(X_1^{\ast\ast}, I_0^{\ast\ast})}{(1+\hat {r}^\ast)}+I_0^{\ast\ast}=\frac{C_1 (X_1^\ast, I_0^\ast)}{(1+\hat{r}^\ast )}+I_0^\ast +\frac{D(X_1^\ast)}{(1+\hat{r}^\ast)}\), which may be simplified into \(A:=3+3\ln(\frac{1+r^{\ast \ast}}{1+\hat{r}^\ast})-\frac{1+r^{\ast\ast}}{1+\hat {r}^\ast}=0\). Since \(B(q):=3+3\ln(q)-q\) is strictly increasing in the relevant range \(0< q=\frac{1+r^{\ast\ast}}{1+r^\ast}< 1\) and \(\lim\limits_{q\to 0} B(q)=-\infty, \lim\limits_{q\to 1} B(q)=2\), there exists a unique zero point of B(q) and hence a unique critical discount rate \(\hat{r}^\ast\). E.g., \(\hat{r}^\ast= 1.5963\) if r ** = 0.1.

Since social cost is minimised at \((X_1^{\ast\ast}, I_0^{\ast \ast})\), and \(A(X_1^{\ast\ast}, I_0^{\ast \ast})\geq0\Leftrightarrow r^\ast \le \hat {r}^\ast \) holds, the social planner will choose \((\overline{X}_1^{\ast\ast}, \overline{I}_0^{\ast\ast})=(X_1^{\ast\ast}, I_0^{\ast\ast})\) if \(r^\ast\le \hat{r}^\ast.\)

If \(r^\ast>\hat{r}^\ast\), the social planner will choose a pair of standards \((\overline{X}_1^{\ast\ast},\overline{I}_0^{\ast\ast})\) for which \(A(\overline{X}_1,\overline{I}_0)=0\) holds. That is, \((*) \overline{X}_1 =\sqrt {\frac{1}{a}\left(\ln\left(\frac{ac^2}{8(1+r^\ast)^3} \right)+3-\overline{I}_{0}\right)2(1+r^\ast)e^{\overline{I}_0}}\).

Thus, the pair of second best standards \((\overline{X}_1^{\ast\ast}, \overline{I}_0^{\ast\ast})\) is implicitly defined by (*) and

$$(**) \frac{d\hbox{SC}(\overline{X}_1 (\overline{I}_0),\overline{I}_0)}{d\overline{I}_0}=0,$$

and may be evaluated for given levels of r *.

Appendix A5 – Case r * < r **

For\(\overline{X}_1 =X_1^{\ast {\rm SL}} -\varepsilon \)with ɛ sufficiently small\(\frac{d{\rm SC}^{\rm N}}{d\overline{X}_1}> 0\)holds.

Because of the continuity of \(\frac{d{\rm SC}^{\rm N}}{d\overline{X}_1}\) it suffices to show that \(\frac{d{\rm SC}^{\rm N}}{d\overline{X}_1}> 0\) holds for \(\overline{X}_1 =X_1^{\ast {\rm SL}}\).

$$\frac{d\hbox{SC}^{\rm N}}{d\overline{X}_1}(X_1^{\ast {\rm SL}})=\underbrace {\left( {1-\frac{1+r^\ast}{1+r^{\ast\ast}}} \right)}_{> 0}\underbrace {\frac{dI_0^\ast (X_1^{\ast {\rm SL}})}{d\overline{X}_1}}_{> 0}+\frac{1}{1+r^{\ast\ast}}\underbrace {\left({\frac{\partial C_1 (X_{_1}^{\ast {\rm SL}} ,I_0^{\ast {\rm SL}})}{\partial X_1}+D^{\prime}(X_1^{\ast {\rm SL}})} \right)}_{=0}> 0.$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endres, A., Bertram, R. & Rundshagen, B. Environmental Liability Law and Induced Technical Change – The Role of Discounting. Environ Resource Econ 36, 341–366 (2007). https://doi.org/10.1007/s10640-006-9021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-006-9021-3

Key words

Navigation