Skip to main content

Advertisement

Log in

Development of a MET-targeted single-chain antibody fragment as an anti-oncogene targeted therapy for breast cancer

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

The usage of monoclonal antibodies (mAbs) and antibody fragments, as a matter associated with the biopharmaceutical industry, is increasingly growing. Harmonious with this concept, we designed an exclusive modeled single-chain variable fragment (scFv) against mesenchymal-epithelial transition (MET) oncoprotein. This scFv was newly developed from Onartuzumab sequence by gene cloning, and expression using bacterial host. Herein, we examined its preclinical efficacy for the reduction of tumor growth, invasiveness and angiogenesis in vitro and in vivo. Expressed anti-MET scFv demonstrated high binding capacity (48.8%) toward MET-overexpressing cancer cells. The IC50 value of anti-MET scFv against MET-positive human breast cancer cell line (MDA-MB-435) was 8.4 µg/ml whereas this value was measured as 47.8 µg/ml in MET-negative cell line BT-483. Similar concentrations could also effectively induce apoptosis in MDA-MB-435 cancer cells. Moreover, this antibody fragment could reduce migration and invasion in MDA-MB-435 cells. Grafted breast tumors in Balb/c mice showed significant tumor growth suppression as well as reduction of blood-supply in response to recombinant anti-MET treatment. Histopathology and immunohistochemical assessments revealed higher rate of response to therapy. In our study, we designed and synthetized a novel anti-MET scFv which could effectively suppress MET-overexpressing breast cancer tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the findings of current study are provided within the manuscript.

References

  1. Ayyar BV, Arora S, O’Kennedy R (2016) Coming-of-age of antibodies in cancer therapeutics. Trends Pharmacol Sci 37:1009–1028

    Article  CAS  PubMed  Google Scholar 

  2. Rodgers KR, Chou RC (2016) Therapeutic monoclonal antibodies and derivatives: historical perspectives and future directions. Biotechnol Adv 34(6):1149–1158

    Article  CAS  PubMed  Google Scholar 

  3. Manoutcharian K, Perez-Garmendia R, Gevorkian G (2017) Recombinant antibody fragments for neurodegenerative diseases. Curr Neuropharmacol 15(5):779–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Li X, Chen X, Nielsen J, Petranovic D, Siewers V (2021) Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion. Microb Cell Factories 20(1):1–17

    Article  Google Scholar 

  5. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23(9):1126–1136

    Article  CAS  PubMed  Google Scholar 

  6. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M (2012) scFv antibody: principles and clinical application. Clin Dev Immunol. https://doi.org/10.1155/2012/980250

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peterson E, Owens SM, Henry RL (2006) Monoclonal antibody form and function: manufacturing the right antibodies for treating drug abuse. The AAPS J 8(2):383

    Article  Google Scholar 

  8. Monnier PP, Vigouroux RJ, Tassew NG (2013) In vivo applications of single chain fv (variable domain)(scFv) fragments. Antibodies 2(2):193–208

    Article  CAS  Google Scholar 

  9. Heo MA, Kim SH, Kim SY, Kim YJ, Chung J, Oh MK, Lee SG (2006) Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expr Purif 47(1):203–209

    Article  CAS  PubMed  Google Scholar 

  10. Su Z, Han Y, Sun Q, Wang X, Xu T, Xie W et al (2019) Anti-Met VHH pool overcomes MeT-targeted cancer therapeutic resistance. Mol Cancer Ther 18(1):100–111

    Article  CAS  PubMed  Google Scholar 

  11. Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC (2018) Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer 17(1):1–8

    Article  Google Scholar 

  12. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM et al (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445(7126):437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petrelli A, Circosta P, Granziero L, Mazzone M, Pisacane A, Fenoglio S et al (2006) Ab-induced ectodomain shedding mediates hepatocytes growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci 103(13):5090–5095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng Y, Ma PC (2011) Anti-MET targeted therapy has come of age: the first durable complete response with MetMAb in metastatic gastric cancer. Cancer Discov 1(7):550–554

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, Zeng Z (2018) Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 17(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Minuti G, Cappuzzo F, Duchnowska R, Jassem J, Fabi A, O’brien T, Mendoza AD, Landi L, Biernat W, Czartoryska-Arłukowicz B, Jankowski T (2012) Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br J Cancer 107(5):793–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faiella A, Riccardi F, Cartenì G, Chiurazzi M, Onofrio L (2022) The emerging role of c-Met in carcinogenesis and clinical implications as a possible therapeutic target. J Oncol. https://doi.org/10.1155/2022/5179182

    Article  PubMed  PubMed Central  Google Scholar 

  18. Comoglio PM, Giordano S, Trusolino L (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7(6):504–516

    Article  CAS  PubMed  Google Scholar 

  19. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361

    Article  PubMed  Google Scholar 

  20. Van Cutsem E, Karaszewska B, Kang YK, Chung HC, Shankaran V, Siena S, Go NF, Yang H, Schupp M, Cunningham D (2019) A multicenter phase II study of AMG 337 in patients with MET-amplified gastric/gastroesophageal junction/esophageal adenocarcinoma and other MET-amplified solid tumors. Clin Cancer Res 25(8):2414–2423

    Article  PubMed  Google Scholar 

  21. Gaule P, Mukherjee N, Corkery B, Eustace AJ, Gately K, Roche S et al (2019) Dasatinib treatment increases sensitivity to c-met inhibition in triple-negative breast cancer cells. Cancers 11(4):548–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jahangiri A, De Lay M, Miller LM, Carbonell WS, Hu YL, Lu K, Tom MW, Paquette J, Tokuyasu TA, Tsao S, Marshall R (2013) Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res 19(7):1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maroun CR, Rowlands T (2014) The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther 142(3):316–338

    Article  CAS  PubMed  Google Scholar 

  24. Shattuck DL, Miller JK, Carraway KL, Sweeney C (2008) Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 68(5):1471–1477

    Article  CAS  PubMed  Google Scholar 

  25. Terlecka P, Krawczyk P, Grenda A, Milanowski J (2021) MET Gene Dysregulation as a Promising Therapeutic Target in Lung Cancer-A Review. J Pers Med 11(12):1370

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bouattour M, Raymond E, Qin S, Cheng AL, Stammberger U, Locatelli G et al (2018) Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatol 67(3):1132–1149

    Article  Google Scholar 

  27. Merchant M, Ma X, Maun HR, Zheng Z, Peng J, Romero M, Huang A, Yang NY, Nishimura M, Greve J, Santell L (2013) Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci 110(32):2987–2996

    Article  Google Scholar 

  28. Jin H, Yang R, Zheng Z, Romero M, Ross J, Bou-Reslan H, Carano RA, Kasman I, Mai E, Young J, Zha J (2008) MetMAb, the one-armed 5D5 anti-c-Met antibody, inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res 68(11):4360–4368

    Article  CAS  PubMed  Google Scholar 

  29. Spigel DR, Edelman MJ, O’Byrne K, Paz-Ares L, Shames DS, Yu W et al (2014) Onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIb or IV NSCLC: results from the pivotal phase III randomized, multicenter, placebo-controlled MET lung (OAM4971g) global trial. Clin Adv Hematol Oncol 32(15):8000

    Google Scholar 

  30. Diéras V, Campone M, Yardley DA, Romieu G, Valero V, Isakoff SJ, Koeppen H, Wilson TR, Xiao Y, Shames DS, Mocci S (2015) Randomized, phase II, placebo-controlled trial of onartuzumab and/or bevacizumab in combination with weekly paclitaxel in patients with metastatic triple-negative breast cancer. Ann Oncol 26(9):1904–1910

    Article  PubMed  Google Scholar 

  31. Boezio AA, Copeland KW, Rex K, Albrecht BK, Bauer D, Bellon SF et al (2016) Of (R)-6-(1-(8-Fluoro-6-(1-methyl-1H-pyrazol-4-yl)-pyridin-3-yl)ethyl)-3-(2-methoxyethoxy)-1,6-naphthyridin-5(6H)-one (AMG 337), a potent and selective inhibitor of MET with high unbound Target Coverage and robust in vivo Antitumor Activity. J Med Chem 4(6):24–42

    Google Scholar 

  32. Hughes PE, Rex K, Caenepeel S, Yang Y, Zhang Y, Broome MA et al (2016) In vitro and in vivo activity of AMG 337, a potent and selective MET kinase inhibitor, in MET-dependent cancer models. Mol Cancer Ther 15(7):1568–1579

    Article  CAS  PubMed  Google Scholar 

  33. Hong Hong DS, LoRusso P, Hamid O, Janku F, Kittaneh M, Catenacci DV, Chan E, Bekaii-Saab T, Gadgeel SM, Loberg RD, Amore BM (2019) Phase I study of AMG 337, a highly selective small-molecule MET inhibitor, in patients with advanced solid tumors. Clin Cancer Res 25(8):2403–2413

    Article  Google Scholar 

  34. Lu S, Török HP, Gallmeier E, Kolligs FT, Rizzani A, Arena S, Göke B, Gerbes AL, De Toni EN (2015) Tivantinib (ARQ 197) affects the apoptotic and proliferative machinery downstream of c-MET: role of Mcl-1, bcl-xl and cyclin B1. Oncotarget 6(26):22167

    Article  PubMed  PubMed Central  Google Scholar 

  35. Edwardraja S, Neelamegam R, Ramadoss V, Venkatesan S, Lee SG (2010) Redesigning of anti-c-Met single chain fv antibody for the cytoplasmic folding and its structural analysis. Biotechnol Bioeng 106(3):367–375

    CAS  PubMed  Google Scholar 

  36. Heo MA, Kim SH, Kim SY, Kim YJ, Chung J, Oh MK et al (2006) Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expr Purif 47(1):203–209

    Article  CAS  PubMed  Google Scholar 

  37. Li K, Tavaré R, Zettlitz KA, Mumenthaler SM, Mallick P, Zhou Y et al (2014) Anti-MET immunoPET for non-small cell lung cancer using novel fully human antibody fragments. Mol Cancer Ther 13(11):2607–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qamsari ES, Sharifzadeh Z, Bagheri S, Riazi-Rad F, Younesi V, Abolhassani M et al (2017) Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies. J Immunotoxicol 14(1):23–30

    Article  CAS  PubMed  Google Scholar 

  39. Lu RM, Chang YL, Chen MS, Wu HC (2011) Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials 32(12):3265–3274

    Article  CAS  PubMed  Google Scholar 

  40. Jagadeeswaran R, Jagadeeswaran S, Fackenthal J (2005) c-Met/HGF pathway in breast cancer cells and inhibition with specific small molecule inhibitor, SU11274. AACR 2005 (1): 2005

  41. Liu HY, Rashidbaigi A (1990) Comparison of various competent cell preparation methods for high efficiency DNA transformation. Biotechniques 8(1):21–25

    CAS  PubMed  Google Scholar 

  42. Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K et al (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27(1):4–25

    Article  CAS  PubMed  Google Scholar 

  43. Alves KZ, Borges HL, Soletti RC, Viana AL, Petrella LI, Soldan M, Chagas VL, Schanaider A, Machado JC (2011) Features of in vitro ultrasound biomicroscopic imaging and colonoscopy for detection of colon tumor in mice. Ultrasound Med Biol 37(12):2086–2095

    Article  PubMed  Google Scholar 

  44. Vigna E, Comoglio PM (2014) Targeting the oncogenic met receptor by antibodies and gene therapy. Oncogene 34(15):1883–1889

    Article  PubMed  Google Scholar 

  45. Comoglio PM, Trusolino L, Boccaccio C (2018) Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer 18(6):341–358

    Article  CAS  PubMed  Google Scholar 

  46. Corso S, Giordano S (2013) Cell-autonomous and non–cell-autonomous mechanisms of HGF/MET–driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer discov 3(9):978–992

    Article  CAS  PubMed  Google Scholar 

  47. Brinkmann U, Kontermann RE (2017) The making of bispecific antibodies. MAbs 9(2):182–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pucca MB, Bertolini TB, Barbosa JE, Galina SVR, Porto GS (2011) Therapeutic monoclonal antibodies: ScFv patents as a marker of a new class of potential biopharmaceuticals. Brazilian J Pharm Sci 47(1):31–39

    CAS  Google Scholar 

  49. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D (2002) Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol 13(6):603–608

    Article  CAS  PubMed  Google Scholar 

  50. Cheng N, Chytil A, Shyr Y, Joly A, Moses HL (2007) Enhanced hepatocyte growth factor signaling by type II transforming growth factor-β receptor knockout fibroblasts promotes mammary tumorigenesis. Cancer Res 67(10):4869–4877

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Liu J-H, Chai K, Tashiro S-I, Onodera S, Ikejima T (2013) Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells. J Pharm Pharmacol 65(11):1622–1642

    Article  CAS  PubMed  Google Scholar 

  52. Trusolino L, Bertotti A (2010) Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11(12):834–848

    Article  CAS  PubMed  Google Scholar 

  53. Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-Kalbolandi S, Eisavand MR, Dinvari H, Farahmand L (2022) Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 22(1):1–20

    Article  Google Scholar 

  54. Ho-Yen CM, Jones JL, Kermorgant S (2015) The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res 17(1):1–11

    Article  CAS  Google Scholar 

  55. Lee Y, Lee JK, Ahn SH, Lee J, Nam DH (2016) WNT signaling in glioblastoma and therapeutic opportunities. Lab Invest 96(2):137–150

    Article  CAS  PubMed  Google Scholar 

  56. Gherardi E, Birchmeier W, Birchmeier C, Woude GV (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12(2):89–103

    Article  CAS  PubMed  Google Scholar 

  57. Cascone T, Xu L, Lin HY, Liu W, Tran HT, Liu Y, Howells K, Haddad V, Hanrahan E, Nilsson MB, Cortez MA (2017) The HGF/c-MET pathway is a driver and biomarker of VEGFR-inhibitor resistance and vascular remodeling in non–small cell lung CancerHGF pathway and VEGFR-Inhibitor resistance in NSCLC. Clin Cancer Res 23(18):5489–5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cassinelli G, Lanzi C, Petrangolini G, Tortoreto M, Pratesi G, Cuccuru G, Laccabue D, Supino R, Belluco S, Favini E, Poletti A (2006) Inhibition of c-Met and prevention of spontaneous metastatic spreading by the 2-indolinone RPI-1. Mol cancer ther 5(9):2388–2397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would thank Dr. Vahid Siavashi and Mr. Alireza Ghovati, Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. for their technical assistance.

Funding

This work was supported by Research Council, University of Tehran. Specialized research grant for Doctoral Program of Higher Education, Faculty of Veterinary Medicine (7508017/6/23).

Author information

Authors and Affiliations

Authors

Contributions

L. F. developed the methodology; Z. Kh. and R.V. conducted the experiments, contributed to the data analysis and wrote the manuscript; M. S., N. J and S. M assisted the experiments; M. R. EN. and A.V. conducted ultrasonography; S. M. N. contributed to scientific assist and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zohreh Khaki or Leila Farahmand.

Ethics declarations

Ethics approval and consent to participate

This project was in accordance with the national norms, the ethical principles and standards for conducting medical research in Iran and evaluated by Motamed Cancer Institute-Academic Centre for Education, Culture and Research. This institution performed its reviews based on United States Public Health Service (USPHS) regulations and applicable federal and local laws. Protocols were also approved by the Animal Care Committee of the University of Tehran (7508017623).

Consent for publication

All authors have agreed to publish this manuscript.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafaei, R., Khaki, Z., Salehi, M. et al. Development of a MET-targeted single-chain antibody fragment as an anti-oncogene targeted therapy for breast cancer. Invest New Drugs 41, 226–239 (2023). https://doi.org/10.1007/s10637-023-01354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01354-7

Keywords

Navigation