Skip to main content

Advertisement

Log in

IL-15-induced lymphocytes as adjuvant cellular immunotherapy for gastric cancer

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Objectives To test the antitumor potential of lymphocytes transferred via adoptive cell therapy (ACT) in a mouse model of human gastric cancer (GC), and to evaluate the clinical efficacy and safety of combining lymphocytes as adjuvant therapy with first-line chemotherapy in patients with GC. Methods We constructed a human GC xenograft model in sublethally irradiated 6–8-week-old male NCG mice. MKN-45 cells (1 × 106 cells/mouse) were subcutaneously injected into mice’s flanks. After tumors had become palpable, we randomized the mice into control, ACTIL−2, and ACTIL−15 groups. Human lymphocytes were then injected into mouse tail veins. In addition, 63 human patients with histologically or cytologically confirmed stage III–IV GC randomly received S-1 + oxaliplatin + ACTIL−15 (combination therapy group) or S-1 + oxaliplatin (chemotherapy group). Results In the mouse study, treatment with ACTIL−15 cells inhibited tumor growth on adoptive transfer, and mice that received ACTIL−15 cells had significantly longer survival rates (p < 0.05, ACTIL−15 vs. ACTIL−2). In the human study, the median survival rate of patients in the combination therapy group was 472 days (95% confidence interval [CI], 276–668 days), whereas that of patients in the chemotherapy group was 266 days (95% CI, 200–332 days; p < 0.05). Eleven percent (7/63) of patients had adverse reactions, but these reactions did not interfere with treatment. Conclusion Adoptive transfer of ACTIL−15 cells in a mouse model of GC and in patients with advanced GC treated with S1 + oxaliplatin improved survival rates in both, with an acceptable safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during the study are included in the published article.

References

  1. Koizumi W, Narahara H, Hara T, Takagane A, Akiya T, Takagi M, Miyashita K, Nishizaki T, Kobayashi O, Takiyama W, Toh Y, Nagaie T, Takagi S, Yamamura Y, Yanaoka K, Orita H, Takeuchi M (2008) S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol 9(3):215–221. https://doi.org/10.1016/S1470-2045(08)70035-4

    Article  CAS  PubMed  Google Scholar 

  2. Vanhoefer U, Rougier P, Wilke H, Ducreux MP, Lacave AJ, Van Cutsem E, Planker M, Santos JG, Piedbois P, Paillot B, Bodenstein H, Schmoll HJ, Bleiberg H, Nordlinger B, Couvreur ML, Baron B, Wils JA (2000) Final results of a randomized phase III trial of sequential high-dose methotrexate, fluorouracil, and doxorubicin versus etoposide, leucovorin, and fluorouracil versus infusional fluorouracil and cisplatin in advanced gastric cancer: a trial of the European Organization for Research and Treatment of Cancer Gastrointestinal Tract Cancer Cooperative Group. J Clin Oncol 18(14):2648–2657. https://doi.org/10.1200/JCO.2000.18.14.2648

    Article  CAS  PubMed  Google Scholar 

  3. Ohtsu A, Shimada Y, Shirao K, Boku N, Hyodo I, Saito H, Yamamichi N, Miyata Y, Ikeda N, Yamamoto S, Fukuda H, Yoshida S, Japan Clinical Oncology Group S (2003) Randomized phase III trial of fluorouracil alone versus fluorouracil plus cisplatin versus uracil and tegafur plus mitomycin in patients with unresectable, advanced gastric cancer: The Japan Clinical Oncology Group Study (JCOG9205). J Clin Oncol 21(1):54–59. https://doi.org/10.1200/JCO.2003.04.130

    Article  Google Scholar 

  4. Van Cutsem E, Moiseyenko VM, Tjulandin S, Majlis A, Constenla M, Boni C, Rodrigues A, Fodor M, Chao Y, Voznyi E, Risse ML, Ajani JA, Group VS (2006) Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. J Clin Oncol 24(31):4991–4997. https://doi.org/10.1200/JCO.2006.06.8429

    Article  CAS  Google Scholar 

  5. Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, Middleton G, Daniel F, Oates J, Norman AR, Upper Gastrointestinal Clinical Studies Group of the National Cancer Research Institute of the United K (2008) Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 358(1):36–46. https://doi.org/10.1056/NEJMoa073149

    Article  Google Scholar 

  6. Koizumi W, Kurihara M, Nakano S, Hasegawa K (2000) Phase II study of S-1, a novel oral derivative of 5-fluorouracil, in advanced gastric cancer. For the S-1 Cooperative Gastric Cancer Study Group. Oncology 58(3):191–197. https://doi.org/10.1159/000012099

  7. Hagihara K, Ikeda M, Maeda S, Uemura M, Yamamoto K, Miyake M, Hama N, Nishikawa K, Miyamoto A, Omiya H, Miyazaki M, Hirao M, Takami K, Nakamori S, Sekimoto M (2016) Effectiveness of irinotecan, S-1, and bevacizumab for rectal cancer with lung and skin metastases after adjuvant chemotherapy. Gan To Kagaku Ryoho 43(12):2313–2315

    PubMed  Google Scholar 

  8. Irino T, Takeuchi H, Terashima M, Wakai T, Kitagawa Y (2017) Gastric cancer in Asia: unique features and management. Am Soc Clin Oncol Educ Book 37:279–291. https://doi.org/10.1200/EDBK_175228

    Article  PubMed  Google Scholar 

  9. Kuo YC, Liu HT, Lin YL, Yang YC, Yang TS, Liau CT, Shen WC, Hsu HC, Chou WC, Chen JS (2014) Modified biweekly oxaliplatin and capecitabine for advanced gastric cancer: a retrospective analysis from a medical center. Biomed J 37(3):141–146. https://doi.org/10.4103/2319-4170.117887

    Article  PubMed  Google Scholar 

  10. Shen L, Shan YS, Hu HM, Price TJ, Sirohi B, Yeh KH, Yang YH, Sano T, Yang HK, Zhang X, Park SR, Fujii M, Kang YK, Chen LT (2013) Management of gastric cancer in Asia: resource-stratified guidelines. Lancet Oncol 14(12):e535–e547. https://doi.org/10.1016/S1470-2045(13)70436-4

    Article  PubMed  Google Scholar 

  11. Hato SV, Khong A, de Vries IJ, Lesterhuis WJ (2014) Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics. Clin Cancer Res 20(11):2831–2837. https://doi.org/10.1158/1078-0432.CCR-13-3141

    Article  CAS  PubMed  Google Scholar 

  12. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73. https://doi.org/10.1038/nri2216

    Article  CAS  PubMed  Google Scholar 

  13. Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y, Lin YJ, Wojtkiewicz G, Iwamoto Y, Mino-Kenudson M, Huynh TG, Hynes RO, Freeman GJ, Kroemer G, Zitvogel L, Weissleder R, Pittet MJ (2016) Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 44(2):343–354. https://doi.org/10.1016/j.immuni.2015.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Schmidt-Wolf IGH (2020) Ten-year update of the international registry on cytokine-induced killer cells in cancer immunotherapy. J Cell Physiol 235(12):9291–9303. https://doi.org/10.1002/jcp.29827

    Article  CAS  PubMed  Google Scholar 

  15. Shen D, Liu ZH, Xu JN, Xu F, Lin QF, Lin F, Mao WD (2016) Efficacy of adoptive cellular therapy in patients with gastric cancer: a meta-analysis. Immunotherapy 8(8):971–981. https://doi.org/10.2217/imt.16.10

    Article  CAS  PubMed  Google Scholar 

  16. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, Grewal N, Spiess PJ, Antony PA, Palmer DC, Tagaya Y, Rosenberg SA, Waldmann TA, Restifo NP (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 101(7):1969–1974. https://doi.org/10.1073/pnas.0307298101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iudicone P, Fioravanti D, Cicchetti E, Zizzari IG, Pandolfi A, Scocchera R, Fazzina R, Pierelli L (2016) Interleukin-15 enhances cytokine induced killer (CIK) cytotoxic potential against epithelial cancer cell lines via an innate pathway. Hum Immunol 77(12):1239–1247. https://doi.org/10.1016/j.humimm.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  18. Wei JGC, An X, Miao W, Zhang C, Wang B, Cai W, Li M, Zhang F (2020) Tumor cell-expressed IL-15Rα drives antagonistic effects on the progression and immune control of gastric cancer and is epigenetically regulated in EBV-positive gastric cancer. Cell Oncol 43(6):1085–1097. https://doi.org/10.1007/s13402-020-00542-4

    Article  CAS  Google Scholar 

  19. Wang W, Jin J, Dai F, Long Z, Liu X, Cai H, Zhou Y, Chen Z, Huang H (2018) Interleukin-15 suppresses gastric cancer liver metastases by enhancing natural killer cell activity in a murine model. Oncol Lett 16(4):4839–4846. https://doi.org/10.3892/ol.2018.9303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Chen B, Yang T, Xiao W, Qian L, Ding Y, Ji M, Ge X, Gong W (2017) Human fused NKG2D-IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells. Cell Mol Immunol 14(3):293–307. https://doi.org/10.1038/cmi.2015.81

    Article  CAS  PubMed  Google Scholar 

  21. UKCCCR (2000) UKCCCR guidelines for the use of cell lines in cancer research. Br J Cancer 82(9):1495–1509. https://doi.org/10.1054/bjoc.1999.1169

    Article  PubMed Central  Google Scholar 

  22. Rettinger E, Kuci S, Naumann I, Becker P, Kreyenberg H, Anzaghe M, Willasch A, Koehl U, Bug G, Ruthardt M, Klingebiel T, Fulda S, Bader P (2012) The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells. Cytotherapy 14(1):91–103. https://doi.org/10.3109/14653249.2011.613931

    Article  CAS  PubMed  Google Scholar 

  23. Qiao G, Wang X, Zhou L, Zhou X, Song Y, Wang S, Zhao L, Morse MA, Hobeika A, Song J, Yi X, Xia X, Ren J, Lyerly HK (2019) Autologous dendritic cell-cytokine induced killer cell immunotherapy combined with S-1 plus cisplatin in patients with advanced gastric cancer: a prospective study. Clin Cancer Res 25(5):1494–1504. https://doi.org/10.1158/1078-0432.CCR-18-2360

    Article  CAS  PubMed  Google Scholar 

  24. Ter Veer E, Mohammad NH, Lodder P, Ngai LL, Samaan M, van Oijen MG, van Laarhoven HW (2016) The efficacy and safety of S-1-based regimens in the first-line treatment of advanced gastric cancer: a systematic review and meta-analysis. Gastric Cancer 19(3):696–712. https://doi.org/10.1007/s10120-015-0587-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Higuchi K, Tanabe S, Shimada K, Hosaka H, Sasaki E, Nakayama N, Takeda Y, Moriwaki T, Amagai K, Sekikawa T, Sakuyama T, Kanda T, Sasaki T, Azuma M, Takahashi F, Takeuchi M, Koizumi W, Tokyo Cooperative Oncology Group TJ (2014) Biweekly irinotecan plus cisplatin versus irinotecan alone as second-line treatment for advanced gastric cancer: a randomised phase III trial (TCOG GI-0801/BIRIP trial). Eur J Cancer 50(8):1437–1445. https://doi.org/10.1016/j.ejca.2014.01.020

    Article  CAS  Google Scholar 

  26. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20(11):651–668. https://doi.org/10.1038/s41577-020-0306-5

    Article  CAS  Google Scholar 

  27. Wang X, Tang S, Cui X, Yang J, Geng C, Chen C, Zhou N, Li Y (2018) Cytokine-induced killer cell/dendritic cell-cytokine-induced killer cell immunotherapy for the postoperative treatment of gastric cancer: a systematic review and meta-analysis. Medicine (Baltimore) 97(36):e12230. https://doi.org/10.1097/MD.0000000000012230

    Article  CAS  Google Scholar 

  28. Zhao Q, Zhang H, Li Y, Liu J, Hu X, Fan L (2010) Anti-tumor effects of CIK combined with oxaliplatin in human oxaliplatin-resistant gastric cancer cells in vivo and in vitro. J Exp Clin Cancer Res 29:118. https://doi.org/10.1186/1756-9966-29-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gammaitoni L, Giraudo L, Macagno M, Leuci V, Mesiano G, Rotolo R, Sassi F, Sanlorenzo M, Zaccagna A, Pisacane A, Senetta R, Cangemi M, Cattaneo G, Martin V, Coha V, Gallo S, Pignochino Y, Sapino A, Grignani G, Carnevale-Schianca F, Aglietta M, Sangiolo D (2017) Cytokine-induced killer cells kill chemo-surviving melanoma cancer stem cells. Clin Cancer Res 23(9):2277–2288. https://doi.org/10.1158/1078-0432.CCR-16-1524

    Article  CAS  PubMed  Google Scholar 

  30. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115(6):1616–1626. https://doi.org/10.1172/JCI24480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hotta K, Sho M, Fujimoto K, Shimada K, Yamato I, Anai S, Konishi N, Hirao Y, Nonomura K, Nakajima Y (2011) Prognostic significance of CD45RO+ memory T cells in renal cell carcinoma. Br J Cancer 105(8):1191–1196. https://doi.org/10.1038/bjc.2011.368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wakatsuki K, Sho M, Yamato I, Takayama T, Matsumoto S, Tanaka T, Migita K, Ito M, Hotta K, Nakajima Y (2013) Clinical impact of tumor-infiltrating CD45RO(+) memory T cells on human gastric cancer. Oncol Rep 29(5):1756–1762. https://doi.org/10.3892/or.2013.2302

    Article  CAS  PubMed  Google Scholar 

  33. Michie CA, McLean A, Alcock C, Beverley PC (1992) Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360(6401):264–265. https://doi.org/10.1038/360264a0

    Article  CAS  PubMed  Google Scholar 

  34. Dutton RW, Bradley LM, Swain SL (1998) T cell memory. Annu Rev Immunol 16:201–223. https://doi.org/10.1146/annurev.immunol.16.1.201

    Article  CAS  PubMed  Google Scholar 

  35. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763. https://doi.org/10.1146/annurev.immunol.22.012703.104702

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81770468), the Beijing Municipal Natural Science Foundation (No. 7162030), and the Beijing Science and Technology Plan Special Issue (No. Z14010101101).

Author information

Authors and Affiliations

Authors

Contributions

Yuefeng Hu and Jingwei Liu: conceptualization, design, and writing (original-draft preparation). Dong Liu, Peilin Cui, and Xu Lu: data curation, writing (reviewing), and editing. Wen Zhang, Hao Chen, and Yongcheng Lu: resources, methodology, and validation. Chunmei Piao: funding acquisition. Xuesong Liu and Yue Wang: validation.

Corresponding author

Correspondence to Jingwei Liu.

Ethics declarations

Ethics approval

The study was approved by the Ethical Review Board of the Medical Ethics Committee of the National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, and PUMC.

Consent to participate

All subjects gave written informed consent in accordance with the Declaration of Helsinki.

Conflict of interests

The authors have no commercial, proprietary, or financial interest in the products or companies described in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 140 KB)

Supplementary file2 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Liu, D., Cui, P. et al. IL-15-induced lymphocytes as adjuvant cellular immunotherapy for gastric cancer. Invest New Drugs 39, 1538–1548 (2021). https://doi.org/10.1007/s10637-021-01160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-021-01160-z

Keywords

Navigation