Skip to main content

Advertisement

Log in

Effect of quinolinyl acrylate derivatives on prostate cancer in vitro and in vivo

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Quinolines and acrylates are chemical compounds which were previously described as potential antitumor agents. In this study, a series of seven new quinolinyl acrylate derivatives were synthesized and evaluated against human prostate cancer cells PC-3 and LNCaP in vitro and in vivo. The most effective compound (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4 hydroxyphenyl) acrylate reduced the viability in both cell lines in a time- and dose-dependent manner. Inhibitory effects were also observed on the adhesion, migration, and invasion of the prostate cancer cells as well as on the neoangiogenesis, clonogenic and MMP-9 activity. The effect in vivo was studied in PC-3 xenografts in nude mice. The results were concordant with the in vitro effects and showed decreased tumor growth in treated animals compared to controls. The study suggests the multi-target efficacy of the quinolinyl derivate against human prostate cancer cells and supports its potential therapeutic usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Canc J Clin 61:69–90

    Article  Google Scholar 

  2. Lukevics E, Abele E, Arsenyan P, Abele R, Rubina K, Shestakova I, Domracheva I, Vologdina V (2002) Synthesis and cytotoxicity of silicon containing pyridine and quinoline sulfides. Met Based Drugs 9:45–51

    Article  CAS  PubMed  Google Scholar 

  3. Mol W, Matyja M, Filip B, Wietrzyk J, Boryczka S (2008) Synthesis and antiproliferative activity in vitro of novel (2-butynyl)thioquinolines. Bioorg Med Chem 16:8136–8141

    Article  CAS  PubMed  Google Scholar 

  4. Hranjec M, Grdisa M, Pavelic K, Boykin DW, Karminski-Zamola G (2003) Synthesis and antitumor evaluation of some new substituted amidino-benzimidazolyl-furyl-phenyl-acrylates and naphtho[2,1-b]furan-carboxylates. Farmaco 58:1319–1324

    Article  CAS  PubMed  Google Scholar 

  5. Hranjec M, Starcevic K, Piantanida I, Kralj M, Marjanovic M, Hasani M, Westman G, Karminski-Zamola G (2008) Synthesis, antitumor evaluation and DNA binding studies of novel amidino-benzimidazolyl substituted derivatives of furyl-phenyl- and thienyl-phenyl-acrylates, naphthofurans and naphthothiophenes. Eur J Med Chem 43:2877–2890

    Article  CAS  PubMed  Google Scholar 

  6. Yang L, Zeng W, Li D, Zhou R (2009) Inhibition of cell proliferation, migration and invasion by DNAzyme targeting MMP-9 in A549 cells. Oncol Rep 22:121–126

    Article  CAS  PubMed  Google Scholar 

  7. Burg-Roderfeld M, Roderfeld M, Wagner S, Henkel C, Grotzinger J, Roeb E (2007) MMP-9-hemopexin domain hampers adhesion and migration of colorectal cancer cells. Int J Oncol 30:985–992

    CAS  PubMed  Google Scholar 

  8. Nemeth JA, Yousif R, Herzog M, Che M, Upadhyay J, Shekarriz B, Bhagat S, Mullins C, Fridman R, Cher ML (2002) Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. J Natl Canc Inst 94:17–25

    Article  CAS  Google Scholar 

  9. Stetler-Stevenson WG, Yu AE (2001) Proteases in invasion: matrix metalloproteinases. Semin Canc Biol 11:143–152

    Article  CAS  Google Scholar 

  10. Chen MH, Cui SX, Cheng YN, Sun LR, Li QB, Xu WF, Ward SG, Tang W, Qu XJ (2008) Galloyl cyclic-imide derivative CH1104I inhibits tumor invasion through suppressing matrix metalloproteinase activity. Anticancer Drugs 19:957–965

    Article  CAS  PubMed  Google Scholar 

  11. Rodrigues J, Abramjuk C, Vasquez L, Gamboa N, Dominguez J, Nitzsche B, Hopfner M, Georgieva R, Baumler H, Stephan C, Jung K, Lein M, Rabien A (2011) New 4-maleamic acid and 4-maleamide peptidyl chalcones as potential multitarget drugs for human prostate cancer. Pharm Res 28:907–919

    Article  CAS  PubMed  Google Scholar 

  12. Ruiz Y, Rodrigues J, Arvelo F, Usubillaga A, Monsalve M, Diez N, Galindo-Castro I (2008) Cytotoxic and apoptosis-inducing effect of ent-15-oxo-kaur-16-en-19-oic acid, a derivative of grandiflorolic acid from Espeletia schultzii. Phytochemistry 69:432–438

    Article  CAS  PubMed  Google Scholar 

  13. Atienza JM, Zhu J, Wang X, Xu X, Abassi Y (2005) Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen 10:795–805

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. Meth Mol Biol 294:23–29

    Google Scholar 

  15. Qu X, Yuan Y, Xu W, Chen M, Cui S, Meng H, Li Y, Makuuchi M, Nakata M, Tang W (2006) Caffeoyl pyrrolidine derivative LY52 inhibits tumor invasion and metastasis via suppression of matrix metalloproteinase activity. Anticancer Res 26:3573–3578

    CAS  PubMed  Google Scholar 

  16. Nitzsche B, Gloesenkamp C, Schrader M, Ocker M, Preissner R, Lein M, Zakrzewicz A, Hoffmann B, Hopfner M (2010) Novel compounds with antiangiogenic and antiproliferative potency for growth control of testicular germ cell tumours. Br J Canc 103:18–28

    Article  CAS  Google Scholar 

  17. Powell AA, Akare S, Qi W, Herzer P, Jean-Louis S, Feldman RA, Martinez JD (2006) Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity. BMC Canc 6:219

    Article  Google Scholar 

  18. Feldman JP, Goldwasser R, Mark S, Schwartz J, Orion I (2009) A mathematical model for tumor volume evaluation using two-dimensions. J Appl Quant Methods 4:455–462

    Google Scholar 

  19. Gurovic MS, Lanza AM, Adanez MC, Omana MC, Gomez IG, Murray AP, Lopez PS (2011) Cytotoxic effects induced by combination of heliantriol B2 and dequalinium against human leukemic cell lines. Phytother Res 25:603–610

    Article  PubMed  Google Scholar 

  20. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Canc Res 68:1777–1785

    Article  CAS  Google Scholar 

  21. Freedman VH, Shin SI (1974) Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell 3:355–359

    Article  CAS  PubMed  Google Scholar 

  22. Kelavkar UP, Nixon JB, Cohen C, Dillehay D, Eling TE, Badr KF (2001) Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis 22:1765–1773

    Article  CAS  PubMed  Google Scholar 

  23. Khodursky AB, Zechiedrich EL, Cozzarelli NR (1995) Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Natl Acad Sci USA 92:11801–11805

    Article  CAS  PubMed  Google Scholar 

  24. Dominguez JN, Leon C, Rodrigues J, Gamboa de Dominguez N, Gut J, Rosenthal PJ (2005) Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. J Med Chem 48:3654–3658

    Article  CAS  PubMed  Google Scholar 

  25. Seck M, Desrivot J, Bories C, Loiseau P, Franck X, Hocquemiller R, Figadere B, Peyrat JF, Provot O, Brion JD, Alami M (2005) Antileishmanial activity of five 2- or 3- quinolines by enyne group. Dakar Med 50:172–175

    CAS  PubMed  Google Scholar 

  26. Ferrer R, Lobo G, Gambo N, Rodrigues J, Abramjuk C, Jung K, Lein M, Charris JE (2009) Synthesis of 7-chloroquinolinyl-4-aminophenylchalcones: potential antimalarial and anticancer agents. Sci Pharm 77:725–741

    Article  CAS  Google Scholar 

  27. Gao M, Wang M, Miller KD, Hutchins GD, Zheng QH (2010) Synthesis and in vitro biological evaluation of carbon-11-labeled quinoline derivatives as new candidate PET radioligands for cannabinoid CB2 receptor imaging. Bioorg Med Chem 18:2099–2106

    Article  CAS  PubMed  Google Scholar 

  28. Beauchard A, Jaunet A, Murillo L, Baldeyrou B, Lansiaux A, Cherouvrier JR, Domon L, Picot L, Bailly C, Besson T, Thiery V (2009) Synthesis and antitumoral activity of novel thiazolobenzotriazole, thiazoloindolo[3,2-c]quinoline and quinolinoquinoline derivatives. Eur J Med Chem 44:3858–3865

    Article  CAS  PubMed  Google Scholar 

  29. Takeuchi Y, Oda T, Chang MR, Okamoto Y, Ono J, Oda Y, Harada K, Hashigaki K, Yamato M (1997) Synthesis and antitumor activity of fused quinoline derivatives. IV. Novel 11-aminoindolo[3,2-b]quinolines. Chem Pharm Bull (Tokyo) 45:406–411

    Article  CAS  Google Scholar 

  30. Olsson A, Bjork A, Vallon-Christersson J, Isaacs JT, Leanderson T (2010) Tasquinimod (ABR-215050), a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors. Mol Cancer 9:107

    Article  PubMed  Google Scholar 

  31. Bratt O, Haggman M, Ahlgren G, Nordle O, Bjork A, Damber JE (2009) Open-label, clinical phase I studies of tasquinimod in patients with castration-resistant prostate cancer. Br J Canc 101:1233–1240

    Article  CAS  Google Scholar 

  32. Chen Y, Chen S, Lu X, Cheng H, Ou Y, Cheng H, Zhou GC (2009) Synthesis, discovery and preliminary SAR study of benzofuran derivatives as angiogenesis inhibitors. Bioorg Med Chem Lett 19:1851–1854

    Article  CAS  PubMed  Google Scholar 

  33. Chien CM, Yang SH, Lin KL, Chen YL, Chang LS, Lin SR (2008) Novel indoloquinoline derivative, IQDMA, suppresses STAT5 phosphorylation and induces apoptosis in HL-60 cells. Chem Biol Interact 176:40–47

    Article  CAS  PubMed  Google Scholar 

  34. Mabeta P, Auer R, Mphahlele MJ (2009) Evaluation of the antiangiogenic effects of 2-aryl-3-bromoquinolin-4(1H)-ones and a NCH3-4-oxo derivative. Biol Pharm Bull 32:937–940

    Article  CAS  PubMed  Google Scholar 

  35. Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8:918–921

    Article  CAS  PubMed  Google Scholar 

  36. Chodniewicz D, Klemke RL (2004) Guiding cell migration through directed extension and stabilization of pseudopodia. Exp Cell Res 301:31–37

    Article  CAS  PubMed  Google Scholar 

  37. Pepper MS (1997) Manipulating angiogenesis. From basic science to the bedside. Arterioscler Thromb Vasc Biol 17:605–619

    Article  CAS  PubMed  Google Scholar 

  38. Shi J, Xiao Z, Ihnat MA, Kamat C, Pandit B, Hu Z, Li PK (2003) Structure-activity relationships studies of the anti-angiogenic activities of linomide. Bioorg Med Chem Lett 13:1187–1189

    Article  CAS  PubMed  Google Scholar 

  39. Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48:411–424

    Article  CAS  PubMed  Google Scholar 

  40. Bendardaf R, Buhmeida A, Hilska M, Laato M, Syrjanen S, Syrjanen K, Collan Y, Pyrhonen S (2010) MMP-9 (gelatinase B) expression is associated with disease-free survival and disease-specific survival in colorectal cancer patients. Canc Investig 28:38–43

    Article  CAS  Google Scholar 

  41. Mira E, Lacalle RA, Buesa JM, de Buitrago GG, Jimenez-Baranda S, Gomez-Mouton C, Martinez A, Manes S (2004) Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci 117:1847–1857

    Article  CAS  PubMed  Google Scholar 

  42. Huang S, Van Arsdall M, Tedjarati S, McCarty M, Wu W, Langley R, Fidler IJ (2002) Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Canc Inst 94:1134–1142

    Article  CAS  Google Scholar 

  43. Cifone MA, Fidler IJ (1980) Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci USA 77:1039–1043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly supported by grants from the Foundation Urological Research, Berlin to CA, JR, and ML (Grant no. GRUB-3), the German Academic Exchange Service (DAAD) to JR (Grant no. Referat 414, A/07/98623) and CDCH-UCV (Grant no. PG-06-7548-2009/1). We thank Sabine Becker for her valuable technical assistance.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Jung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, J.R., Charris, J., Ferrer, R. et al. Effect of quinolinyl acrylate derivatives on prostate cancer in vitro and in vivo. Invest New Drugs 30, 1426–1433 (2012). https://doi.org/10.1007/s10637-011-9716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9716-3

Keywords

Navigation