Skip to main content

Advertisement

Log in

Pro-apoptotic activity of imidazole derivatives mediated by up-regulation of Bax and activation of CAD in Ehrlich Ascites Tumor cells

  • Phase I Studies
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

In this study we report that, imidazole derivatives can induce apoptosis in Ehrlich ascites tumor (EAT) cells, which is clearly evident from annexin-V staining, flow cytometric analysis of cell cycle phase distribution and DNA fragmentation. Delineating further into molecular mechanisms leading to apoptosis of EAT cells, we observed that imidazole derivatives induce tumor cell death by the up-regulation of proto-oncoprotein Bax, release of cytochrome c from the mitochondria which activates caspase-3 and activated caspase-3 activates CAD (Caspase Activated DNase) causes DNA fragmentation. The status of Bcl-2 remains unaltered in EAT cells, and the under expression of Bcl-2 and up-regulation of Bax resulted in the increase of Bax: Bcl-2 ratio suggesting that Bcl-2 family involved in the control of apoptosis. These results suggest a further possible clinical application of imidazole derivatives as pro-apoptotic agent in association with conventional chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Labanauskas LK, Brukstus AB, Gaidelis PG, Buchinskaite VA, Udrenaite EB, Dauksas VK (2000) Synthesis and antiinflammatory activity of some new 1-Acyl derivatives of 2-Methylthio-5,6-Diethoxybenzimidazole. Pharm Chem J 34:353–355

    Article  CAS  Google Scholar 

  2. Grassmann S, Sadek B, Ligneau X, Elz S, Ganellin CR, Arrang JM, Schwartz JC, Stark H, Schunack W (2002) Progress in the proxifan class: heterocyclic congeners as novel potent and selective histamine H(3)-receptor antagonists. Eur J Pharm Sci 15:367–378

    Article  PubMed  CAS  Google Scholar 

  3. Can-Eke B, Puskullu MO, Buyukbingol E, Iscan M (1998) A study on the antioxidant capacities of some benzimidazoles in rat tissues. Chem Biol Interact 113:65–77

    Article  PubMed  CAS  Google Scholar 

  4. Sevak R, Paul A, Goswami S, Santini D (2002) Gastroprotective effect of beta3 adrenoreceptor agonists ZD 7114 and CGP 12177A in rats. Pharmacol Res 46:351–356

    Article  PubMed  CAS  Google Scholar 

  5. Izabella K (1998) New derivatives of imidazole as potential anticancer agents. IL Farmaco 53:342–345

    Article  Google Scholar 

  6. Demirayak S, Kayagil I (2005) Synthesis of some 6,8-Diarylimidazo[1,2-a]pyrazine derivatives by using either reflux or microwave irradiation method and investigation of their anticancer activities. J Heterocycl Chem 42:319–325

    Article  CAS  Google Scholar 

  7. Hoskin PJ, Saunders MI, Dische S (1999) Hypoxic radiosensitizers in radical radiotherapy for patients with bladder carcinoma: hyperbaric oxygen, misonidazole, and accelerated radiotherapy, carbogen, and nicotinamide. Cancer 86:1322–1328

    Article  PubMed  CAS  Google Scholar 

  8. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy-eighteenth bruce F. Cain Memorial Award Lecture. Cancer Res 59:5863–5870

    PubMed  CAS  Google Scholar 

  9. Taylor YC, Rauth AM (1978) Differences in the toxicity and metabolism of the 2-nitroimidazole misonidazole (Ro-07-0582) in HeLa and Chinese hamster ovary cells. Cancer Res 38:2745–2752

    PubMed  CAS  Google Scholar 

  10. Chern JH, Shia KS, Chang CM, Lee CC, Lee YC, Tai CL, Lin YT, Chang CS, Tseng HY (2004) Synthesis and in vitro cytotoxicity of 5-substituted 2-cyanoimino-4-imidazodinone and 2-cyanoimino-4-pyrimidinone derivatives. Bioorg Med Chem Lett 14(5):1169–1172

    Article  PubMed  CAS  Google Scholar 

  11. Rohtash K, William LJ (2005) Design, synthesis and in vitro cytotoxic studies of novel bis-pyrrolo[2,1][1,4] benzodiazepine-pyrrole and imidazole polyamide conjugates. Eur J Med Chem 40:641–654

    Article  CAS  Google Scholar 

  12. Gunther W, Pawlak E, Damasceno R, Arnold H, Terzis AJ (2003) Temozolomide induced apoptosis and senescence in glioma cells cultured as multicellular spheroids. Br J Cancer 88:463–469

    Article  PubMed  CAS  Google Scholar 

  13. Anil Kumar C, Nanjunda Swamy S, Gaonkar SL, Basappa, Salimath BP, Rangappa, KS (2006) N-substituted-2-butyl-5-chloro-3H-imidazole-4-carbaldehyde derivatives as anti-tumor agents against Ehrlich ascites tumor cells in vivo. Med Chem (in press)

  14. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    Article  PubMed  CAS  Google Scholar 

  15. White E (1996) Life, death and pursuit of apoptosis. Genes Dev 10:1–15

    Article  PubMed  CAS  Google Scholar 

  16. Hickman JA (1992) Apoptosis induced by anticancer drugs. Cancer Metastasis Rev 11:121–129

    Article  PubMed  CAS  Google Scholar 

  17. Sen S, D’Incalci M (1992) Biochemical events and relevance to cancer chemotherapy. FEBS Lett 307:122–127

    Article  PubMed  CAS  Google Scholar 

  18. Fisher DE (1994) Apoptosis in cancer therapy: crossing the threshold. Cell 78:539–542

    Article  PubMed  CAS  Google Scholar 

  19. Wright SC, Zhong J, Larrick JW (1994) Inhibition of apoptosis as a mechanism of tumor promotion. FASEB J 8:654–660

    PubMed  CAS  Google Scholar 

  20. Darzykiewicz Z, Li XG (1994) Assays of cell viability; discrimination of cells dying by apoptosis methods. Cell Biol 41:15–38

    Article  Google Scholar 

  21. Kaufman SH, Hengartner MO (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11:526–534

    Article  Google Scholar 

  22. Das T, Sa G, Sinha P, Ray PK (1999) Induction of cell proliferation and apoptosis: dependence on the dose of the inducer. Biochem Biophys Res Commun 260:105–110

    Article  PubMed  CAS  Google Scholar 

  23. Jiang MC, Yang-Yen HF, Lin JK, Yen JJ (1996) Differential expression of p53, c-Myc, Bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene 13:609–616

    PubMed  CAS  Google Scholar 

  24. Thomas WS, Oltvai ZN, Wang K, Boise LH, Thompson CB, Korsmeyer SJ (1995) Multiple Bcl-2 family members demonstrate selective dimerisations of Bax. Proc Natl Acad Sci USA 92:7834–7838

    Article  Google Scholar 

  25. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that acclerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  26. Liu X, Kim CN, Yang J, Jemmerson R, Wang W (1996) Induction of apoptosis programme in cell free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  27. Nunez G, Benedict MA, Hu Y, Inohara N (1998) Caspases: the proteases of the apoptotic pathway. Oncogene 17:3237–3245

    Article  PubMed  Google Scholar 

  28. Chen M, Wang J (2002) Initiator caspases in apoptosis signaling pathways. Apoptosis 7:313–319

    Article  PubMed  CAS  Google Scholar 

  29. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteoplysis. Cell 91:443–446

    Article  PubMed  CAS  Google Scholar 

  30. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    Article  PubMed  CAS  Google Scholar 

  31. Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    Article  PubMed  CAS  Google Scholar 

  32. Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276:1571–1574

    Article  PubMed  CAS  Google Scholar 

  33. Wen LP, Fahrni JA, Troie S, Guan J-L, Orth K, Rosen GD (1997) Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 272:26056–26061

    Article  PubMed  CAS  Google Scholar 

  34. Cosulich SC, Horiuchi H, Zerial M, Clarke PR, Woodman PG: Cleavage of Rabaptin-5 blocks endosome fusion during apoptosis. EMBO J 16:6182–6191

    Article  PubMed  CAS  Google Scholar 

  35. Cardone MH, Salvesen GS, Widmann C, Johnson G, Frisch SM (1997) The regulation of anoikis: MEKK-1 activation requires cleavage by Caspases. Cell 90:315–323

    Article  PubMed  CAS  Google Scholar 

  36. Emoto Y, Manome Y, Meinhardt G, Kisaki H, Kharbanda S, Robertson M, Weichselbaum R, Kufe D (1995) Proteolytic activation of protein kinase C delta by an ICE-like protease in irradiated cells. EMBO J 14:6148–6156

    PubMed  CAS  Google Scholar 

  37. Sakhharia H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  Google Scholar 

  38. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase activated DNase that degrades DNA during apoptosis and its inhibitor ICAD. Nature 391:43–50

    Article  PubMed  CAS  Google Scholar 

  39. Hersey P (1999) Impediments to successful immunotherapy. Pharmacol Ther 81:111–119

    Article  PubMed  CAS  Google Scholar 

  40. Villunger A, Egle A, Kos M, Hartmann BL, Geley S, Kofler R, Greil R (1997) Drug induced apoptosis is associated with enhanced Fas(Apo-1/(CD95) signialling in human T- acute Lymphatic leukemia Cells. Cancer Res 57:3331–3334

    PubMed  CAS  Google Scholar 

  41. Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    Article  PubMed  CAS  Google Scholar 

  42. Reed JC (1994) Bcl-2 and regulation of programmed cell death. J Cell Biol 124:1–6

    Article  PubMed  CAS  Google Scholar 

  43. Waterhouse NJ, Green DR (1999) Mitochondria and apoptosis: HQ or high-security prison? J Clin Immunol 19:378–387

    Article  PubMed  CAS  Google Scholar 

  44. Villa PG, Henzel WJ, Sensenbrenner M, Henderson CE, Pettmann B (1998) Calpain inhibitors, but not caspase inhibitors, prevents actin proteolysis and DNA fragmentation during apoptosis. J Cell Sci 111:713–722

    PubMed  CAS  Google Scholar 

  45. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamastu A, Nagata S (1998) A caspase activated DNase that degrades DNA during apoptosis and its inhibitor ICAD. Nature 391:43–50

    Article  PubMed  CAS  Google Scholar 

  46. Liu X, Li P, Widlak P, Zou H, Luo X, Garrard WT, Wang X (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci USA 95:8461–8466

    Article  PubMed  CAS  Google Scholar 

  47. Strobel T, Swanson L, Korsmeyer S, Cannistra SA: Bax enhances paclitaxel- induced apoptosis through a p53 independent pathway. Proc Natl Acad Sci USA 93:14094–14099

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Department of Biotechnology, New Delhi, India and CSIR, Government of India for financial support under the project vide no 01(1904)/03/EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchugarakoppal S. Rangappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anil Kumar, C., Jayarama, S., Basappa et al. Pro-apoptotic activity of imidazole derivatives mediated by up-regulation of Bax and activation of CAD in Ehrlich Ascites Tumor cells. Invest New Drugs 25, 343–350 (2007). https://doi.org/10.1007/s10637-006-9033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-006-9033-4

Keywords

Navigation