Skip to main content

Advertisement

Log in

An extended 15 Hz ERG protocol (1): the contributions of primary and secondary rod pathways and the cone pathway

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The minimum in the amplitude versus flash strength curve of dark-adapted 15 Hz electroretinograms (ERGs) has been attributed to interactions between the primary and secondary rod pathways. The 15 Hz ERGs can be used to examine the two rod pathways in patients. However, previous studies suggested that the cone-driven pathway also contributes to the 15 Hz ERGs for flash strengths just above that of the minimum. We investigated cone pathway contributions to improve upon the interpretation of (abnormal) 15 Hz ERGs measured in patients. We recorded 15 Hz ERGs in five healthy volunteers, using a range of flash strengths that we extended to high values. The stimuli were varied in both colour (blue, green, amber, and red) and flash duration (short flash and square wave) in order to stimulate rods and cones in various ways. The differences in the responses to the four colours could be fully explained by the spectral sensitivity of rods for flash strengths up to approximately 12.5 log quanta·deg−2. At higher flash strengths, higher-order harmonics appeared in the responses which could be attributed to cones being more sensitive than rods to higher frequencies. Furthermore, the amplitude curves of the blue and green responses showed a second minimum suggesting rod to cone interactions. We present a descriptive model of the contributions of the rod and cone pathways. In clinical application, we would advise using the short flash flicker instead of the square wave flicker, as the responses are of larger amplitude, and cone pathway contributions can be recognized from large higher-order harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For the analysis of linear and non-linear response components, the sine-wave is the best choice but this was not optional in our experimental set-up. However, as described in previous studies, responses to square wave flicker are similar to sine wave responses [11, 28, 38].

References

  1. Bloomfield SA, Dacheux RF (2001) Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20(3):351–384

    Article  PubMed  CAS  Google Scholar 

  2. Volgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24(49):11182–11192

    Article  PubMed  Google Scholar 

  3. Wassle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5(10):747–757

    Article  PubMed  Google Scholar 

  4. Robson JG, Maeda H, Saszik SM, Frishman LJ (2004) In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vision Res 44(28):3253–3268

    Article  PubMed  CAS  Google Scholar 

  5. Sampath AP, Rieke F (2004) Selective transmission of single photon responses by saturation at the rod-to-rod bipolar synapse. Neuron 41(3):431–443

    Article  PubMed  CAS  Google Scholar 

  6. Dunn FA, Doan T, Sampath AP, Rieke F (2006) Controlling the gain of rod-mediated signals in the mammalian retina. J Neurosci 26(15):3959–3970

    Article  PubMed  CAS  Google Scholar 

  7. Sharpe LT, Stockman A (1999) Rod pathways: the importance of seeing nothing. Trends Neurosci 22(11):497–504

    Article  PubMed  CAS  Google Scholar 

  8. Conner JD, MacLeod DI (1977) Rod photoreceptors detect rapid flicker. Science 195(4279):698–699

    Article  PubMed  CAS  Google Scholar 

  9. Conner JD (1982) The temporal properties of rod vision. J Physiol 332:139–155

    PubMed  CAS  Google Scholar 

  10. Sharpe LT, Stockman A, MacLeod DI (1989) Rod flicker perception: scotopic duality, phase lags and destructive interference. Vision Res 29(11):1539–1559

    Article  PubMed  CAS  Google Scholar 

  11. Sharpe LT, Fach CC, Stockman A (1993) The spectral properties of the two rod pathways. Vision Res 33(18):2705–2720

    Article  PubMed  CAS  Google Scholar 

  12. Sharpe LT, Hofmeister J, Fach CC, Stockman A (1994) Spatial relations of flicker signals in the two rod pathways in man. J Physiol 474(3):421–431

    PubMed  CAS  Google Scholar 

  13. Stockman A, Sharpe LT, Zrenner E, Nordby K (1991) Slow and fast pathways in the human rod visual system: electrophysiology and psychophysics. J Opt Soc Am A 8(10):1657–1665

    Article  PubMed  CAS  Google Scholar 

  14. Stockman A, Sharpe LT, Ruther K, Nordby K (1995) Two signals in the human rod visual system: a model based on electrophysiological data. Vis Neurosci 12(5):951–970

    Article  PubMed  CAS  Google Scholar 

  15. Scholl HP, Langrova H, Weber BH, Zrenner E, Apfelstedt-Sylla E (2001) Clinical electrophysiology of two rod pathways: Normative values and clinical application. Graefes Arch Clin Exp Ophthalmol 239(2):71–80

    Article  PubMed  CAS  Google Scholar 

  16. Scholl HP, Langrova H, Pusch CM, Wissinger B, Zrenner E, Apfelstedt-Sylla E (2001) Slow and fast rod ERG pathways in patients with X-linked complete stationary night blindness carrying mutations in the NYX gene. Invest Ophthalmol Vis Sci 42(11):2728–2736

    PubMed  CAS  Google Scholar 

  17. Scholl HP, Besch D, Vonthein R, Weber BH, Apfelstedt-Sylla E (2002) Alterations of slow and fast rod ERG signals in patients with molecularly confirmed stargardt disease type 1. Invest Ophthalmol Vis Sci 43(4):1248–1256

    PubMed  Google Scholar 

  18. Zeitz C, van Genderen M, Neidhardt J, Luhmann UF, Hoeben F, Forster U, Wycisk K, Matyas G, Hoyng CB, Riemslag F, Meire F, Cremers FP, Berger W (2005) Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci 46(11):4328–4335

    Article  PubMed  Google Scholar 

  19. Littink KW, van Genderen MM, Collin RW, Roosing S, de Brouwer AP, Riemslag FC, Venselaar H, Thiadens AA, Hoyng CB, Rohrschneider K, den Hollander AI, Cremers FP, van den Born LI (2009) A novel homozygous nonsense mutation in CABP4 causes congenital cone-rod synaptic disorder. Invest Ophthalmol Vis Sci 50(5):2344–2350

    Article  PubMed  Google Scholar 

  20. van Genderen MM, Bijveld MM, Claassen YB, Florijn RJ, Pearring JN, Meire FM, McCall MA, Riemslag FC, Gregg RG, Bergen AA, Kamermans M (2009) Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 85(5):730–736

    Article  PubMed  Google Scholar 

  21. Ruther K, Sharpe LT, Zrenner E (1994) Dual rod pathways in complete achromatopsia. Ger J Ophthalmol 3(6):433–439

    PubMed  CAS  Google Scholar 

  22. CIE (1926) Commission internationale de l’Eclairage proceedings

  23. Stockman A, Sharpe LT (2006) Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Ophthalmic Physiol Opt 26(3):225–239

    Article  PubMed  Google Scholar 

  24. Padmos P, van Norren D (1971) Cone spectral sensitivity and chromatic adaptation as revealed by human flicker-electroretinography. Vision Res 11(1):27–42

    Article  PubMed  CAS  Google Scholar 

  25. Burns SA, Elsner AE, Kreitz MR (1992) Analysis of nonlinearities in the flicker ERG. Optom Vis Sci 69(2):95–105

    Article  PubMed  CAS  Google Scholar 

  26. Odom JV, Reits D, Burgers N, Riemslag FC (1992) Flicker electroretinograms: a systems analytic approach. Optom Vis Sci 69(2):106–116

    Article  PubMed  CAS  Google Scholar 

  27. Verma R, Pianta MJ (2009) The contribution of human cone photoreceptors to the photopic flicker electroretinogram. J Vis 9(3):9.1–12

    Google Scholar 

  28. Kondo M, Sieving PA (2002) Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli. Invest Ophthalmol Vis Sci 43(7):2500–2507

    PubMed  Google Scholar 

  29. McCulloch DL, Hamilton R (2010) Essentials of photometry for clinical electrophysiology of vision. Doc Ophthalmol 121(1):77–84

    Article  PubMed  Google Scholar 

  30. Marmor MF (1989) An international standard for electroretinography. Doc Ophthalmol 73(4):299–302

    Article  PubMed  CAS  Google Scholar 

  31. Marmor MF, Fishman GA (1989) At last. A standard electroretinography protocol. Arch Ophthalmol 107(6):813–814

    Article  PubMed  CAS  Google Scholar 

  32. Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18(9):988–991

    PubMed  CAS  Google Scholar 

  33. Meigen T, Bach M (1999) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98(3):207–232

    Article  PubMed  CAS  Google Scholar 

  34. Nusinowitz S, Ridder WH III, Ramirez J (2007) Temporal response properties of the primary and secondary rod-signaling pathways in normal and Gnat2 mutant mice. Exp Eye Res 84(6):1104–1114

    Article  PubMed  CAS  Google Scholar 

  35. Gouras P, Gunkel RD (1964) The frequency response of normal, rod achromat and nyctalope ERGs to sinusoidal monochromatic light stimulation. Doc Ophthalmol 18(1):137–150

    Article  PubMed  CAS  Google Scholar 

  36. Arden GB, Carter RM, Hogg CR (1983) A modified ERG technique and the results obtained in X-linked retinitis pigmentosa. Br J Ophthalmol 67(7):419–430

    Article  PubMed  CAS  Google Scholar 

  37. Carpenter RHS, Robson JG (1999) Vision research: a practical guide to laboratory methods. Oxford University Press, Oxford

    Google Scholar 

  38. Bush RA, Sieving PA (1996) Inner retinal contributions to the primate photopic fast flicker electroretinogram. J Opt Soc Am A Opt Image Sci Vis 13(3):557–565

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially funded by ODAS.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke M. C. Bijveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bijveld, M.M.C., Kappers, A.M.L., Riemslag, F.C.C. et al. An extended 15 Hz ERG protocol (1): the contributions of primary and secondary rod pathways and the cone pathway. Doc Ophthalmol 123, 149–159 (2011). https://doi.org/10.1007/s10633-011-9292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-011-9292-z

Keywords

Navigation