Skip to main content

Advertisement

Log in

Cone function in children with a history of preterm birth

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Color vision was examined by psychophysical tests and photopic color full-field electroretinography (ERG) in formerly preterm children, and compared with those of full-term children. In a prospective case–control study, 25 patients with a history of preterm birth 7–14 years of age were divided into three groups: group I, laser-treated retinopathy of prematurity [ROP] (n = 7); group II, spontaneously regressed ROP (n = 8); group III, no ROP (n = 10). Age-matched full-term born children comprised the control group (n = 8). Color vision was assessed by Fansworth D15 and Lanthony desaturated D15 tests. The cone function was tested using photopic full-field ERG. Besides the ISCEV standard stimuli, blue light on amber background was also used (S-cone ERG). The correlation between ERG parameters and prematurity or ROP was determined. We found no significant differences between any patient group and the control group in the results of the psychophysical tests, and implicit times of the ERG responses. The ERG b-wave amplitudes were significantly lower in group I (laser-treated ROP) compared to controls, for 2 of 4 stimulus conditions i.e. the standard (P = 0.028) and S-cone (P = 0.017) single flash ERGs. The general estimating equation model statistics found a significant effect of prematurity on the b-wave amplitudes (P = 0.025, standard, P = 0.014, S-cone ERG). A slightly reduced photopic ERG b-wave amplitude may be associated with prematurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gallo JE, Lennerstrand G (1991) A population based study of ocular abnormalities in premature children aged 5 to 10 years. Am J Ophthalmol 111:539–547

    PubMed  CAS  Google Scholar 

  2. Keith CG, Kitchen WH (1983) Ocular morbidity in infants of very low birth weight. Br J Ophthalmol 67:302–305

    Article  PubMed  CAS  Google Scholar 

  3. Dowdeswell HJ, Slater AM, Broomhall J, Tripp J (1995) Visual deficits in children born at less than 32 weeks’ gestation with and without major ocular pathology and cerebral damage. Br J Ophthalmol 79:447–452

    Article  PubMed  CAS  Google Scholar 

  4. Snir M, Nissenkorn I, Sherf I, Cohen S, Sira IB (1988) Visual acuity, strabismus and amblyopia in preterm babies with and without retinopathy of prematurity. Ann Ophthalmol 20:256–258

    PubMed  CAS  Google Scholar 

  5. Hungerford J, Stewart A, Hope P (1986) Ocular sequel of preterm birth and their relation to ultrasound evidence of cerebral damage. Br J Ophthalmol 70:463–468

    Article  PubMed  CAS  Google Scholar 

  6. Abramov I, Hainline L, Lennerise E, Brown A (1985) Changes in visual functions of children exposed as infants to prolonged illumination. J Am Optometric Assoc 56:614–619

    CAS  Google Scholar 

  7. O’Connor AR, Stephenson T, Johnson A, Tobin MJ, Moseley MJ, Ratib S, Ng Y, Fielder AR (2002) Long-term ophthalmic outcome of low birth weight children with and without retinopathy of prematurity. Pediatrics 109:12–18

    Article  PubMed  Google Scholar 

  8. O’Connor AR, Stephenson T, Johnson A, Tobin MJ, Moseley MJ, Ratib S, Fielder AR (2004) Visual outcome in low birth weight children. Br J Ophthalmol 88:1149–1153

    Article  PubMed  Google Scholar 

  9. Mcloone E, O’Keefe M, Mcloone S, Lanigan B (2006) Long term functional and structural outcomes of laser therapy for retinopathy of prematurity. Br J Ophthalmol 90:754–759

    Article  PubMed  CAS  Google Scholar 

  10. Dobson V, Quinn GE, Abramov I, Hardy RJ, Tung B, Siatkowski RM, Phelps DL (1996) Color vision measured with pseudoisochromatic plates at five and-a-half years in eyes of children from the CRYO-ROP study. Invest Ophth Vis Sci 37:2467–2474

    CAS  Google Scholar 

  11. Reisner DS, Hansen RM, Findl O, Petersen RA, Fulton AB (1997) Dark-adapted thresholds in children with histories of mild retinopathy of prematurity. Invest Ophth Vis Sci 38:1175–1183

    CAS  Google Scholar 

  12. Hansen RM, Fulton AB (2000) Background adaptation in children with a history of mild retinopathy of prematurity. Invest Ophth Vis Sci 46:3458–3462

    Article  Google Scholar 

  13. Fulton AB, Hansen RM, Petersen RA, Vanderveen DK (2001) The rod photoreceptors in retinopathy of prematurity: an electroretinographic study. Arch Ophthalmol 119:499–505

    PubMed  CAS  Google Scholar 

  14. Moskowitz A, Hansen RM, Fulton AB (2005) Early ametropia and ROD photoreceptor function in retinopathy of prematurity. Optom Vis Sci 82:307–317

    Article  PubMed  Google Scholar 

  15. Fulton AB, Hansen RM, Moskowitz A (2008) The cone electroretinogram in retinopathy of prematurity. Invest Opht Vis Sci 49:814–819

    Article  Google Scholar 

  16. An International Committee for Classification of retinopathy of prematurity (2005) The International Classification of retinopathy of prematurity. Arch Ophthalmol 123:991–999

    Article  Google Scholar 

  17. Good GW, Schepler A, Nichols JJ (2005) The reliability of the Lanthony Desaturated D-15 test. Optom Vis Sci 82:1054–1059

    Article  PubMed  Google Scholar 

  18. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) Standard for clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

    Article  PubMed  CAS  Google Scholar 

  19. Hammer XD, Iftimia NV, Ferguson RD, Bigelow CE, Ustun TE, Barnaby AM, Fulton AB (2008) Foveal fine structure in retinopathy of prematurity:An Adaptive Optics Fourier Domain Optical Coherence Tomography study. Invest Ophht Vis Sci 49:2061–2070

    Article  Google Scholar 

  20. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    Article  PubMed  CAS  Google Scholar 

  21. Curcio CA, Kimberly AA, Sloan KR, Lerea CL, Hurley JB, Klkock IB, Milam AH (1991) Distribution and morphology of human cone photoreceptors stained with anti-blue-opsin. J Comp Neurol 312:610–624

    Article  PubMed  CAS  Google Scholar 

  22. Wellard J, Lee D, Valter K, Stone J (2005) Photoreceptors in the rat retina are specifically vulnerable to both hypoxia and hyperoxia. Vis Neurosci 22:501–507

    Article  PubMed  Google Scholar 

  23. Perkins GA, Ellisman MH, Fox DA (2003) Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications. Mol Vis 9:60–73

    PubMed  CAS  Google Scholar 

  24. Nihira M, Anderson K, Gorin FA, Burns MS (1995) Primate rod and cone photoreceptors may differ in glucose accessibility. Invest Opht Vis Sci 36:1259–1270

    CAS  Google Scholar 

  25. Ecsedy M, Szamosi A, Karko C, Zubovics L, Varsanyi B, Nemeth J, Recsan Zs (2007) Comparison of Macular Structure Imaged by Optical Coherence Tomography in Preterm and Full-Term Children. Invest Opht Vis Sci 48:5207–5211

    Article  Google Scholar 

  26. Fulton AB, Hansen RM, Moskowitz A, Barnaby AM (2005) Multifocal ERG in subjects with a history of retinopathy of prematurity. Doc Ophthalmol 111:7–13

    Article  PubMed  Google Scholar 

  27. Padmos P, Norren D, Jaspers Faijer JW (1978) Blue cone function in a family with an inherited tritan defect tested with electroretinography and psychophysics. Invest Ophthalmol Vis Sci 17:436–441

    PubMed  CAS  Google Scholar 

  28. Sawusch M, Pokorny J, Smith VC (1987) Clinical electroretinography for short wavelength sensitive cones. Invest Ophthalmol Vis Sci 28:966–974

    PubMed  CAS  Google Scholar 

  29. Miyake Y, Yagasaki K, Ichikawa H (1985) Differential diagnosis of congenital tritanopia and dominantly inherited juvenile optic atrophy. Arch Ophthalmol 103:1496–1501

    PubMed  CAS  Google Scholar 

  30. Gouras P, MacKay CJ (1990) Electroretinographic responses of the short-wavelength-sensitive cones. Invest Ophthalmol Vis Sci 31:1203–1209

    PubMed  CAS  Google Scholar 

  31. Xiao M, Hendrickson A (2000) Spatial and temporal expression of short long/medium, or both opsins in human fetal cones. J Comp Neurol 425:545–559

    Article  PubMed  CAS  Google Scholar 

  32. Bumsted-O’Brien KM, Shulte D, Hendrickson AE (2003) Expression of photoreceptors-associated molecules during fetal eye development. Mol.Vis 9:401–409

    Google Scholar 

  33. Giusti C (2001) Lanthony 15-Hue Desturated Test for screening of early color vision defects in uncomplicated juvenile diabetes. Jpn J Ophthalmol 45:607–611

    Article  PubMed  CAS  Google Scholar 

  34. Verriest G, Lethem JV, Uvijls A (1982) A new assessment of the normal ranges of the Farnsworth-Munsell 100-Hue test scores. Am J Ophthalmol 93:635–642

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ecsedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ecsedy, M., Varsányi, B., Szigeti, A. et al. Cone function in children with a history of preterm birth. Doc Ophthalmol 122, 141–148 (2011). https://doi.org/10.1007/s10633-011-9268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-011-9268-z

Keywords

Navigation