Skip to main content
Log in

Supervisory control for collision avoidance in vehicular networks using discrete event abstractions

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

We consider the problem of controlling a set of vehicles at an intersection, in the presence of uncontrolled vehicles and a bounded disturbance. We begin by discretizing the system in space and time to construct a suitable discrete event system (DES) abstraction, and formally define the problem to be solved as that of constructing a supervisor over the discrete state space that is safe (i.e., collision-free), non-deadlocking (i.e., the vehicles all cross the intersection eventually), and maximally permissive with respect to the chosen discretization. We show how to model the uncontrolled vehicles and the disturbance through uncontrollable events of the DES abstraction. We define two types of relations between systems and their abstraction: state reduction and exact state reduction. We prove that, when the abstraction is a state reduction of a continuous system, then we can obtain a safe, non-deadlocking, and maximally permissive memoryless supervisor. This is obtained by translating safety and non-deadlocking specifications to the abstract domain, synthesizing the supervisor in this domain, and finally translating the supervisor back to the concrete domain. We show that, when the abstraction is an exact state reduction, the resulting supervisor will be maximally permissive among the class of all supervisors, not merely memoryless ones. Finally, we provide a customized algorithm and demonstrate its scalability through simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn H, Colombo A, Del Vecchio D (2014) Supervisory control for intersection collision avoidance in the presence of uncontrolled vehicles. In: American control conference (ACC)

  • Alur R, Henzinger T, Lafferriere G, Pappas G (2000) Discrete abstractions of hybrid systems. Proc IEEE 88(7):971–984

    Article  Google Scholar 

  • Au TC, Fok CL, Vishwanath S, Julien C, Stone P (2012) Evasion planning for autonomous vehicles at intersections. In: 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1541–1546

  • Bruni L, Colombo A, Del Vecchio D (2013) Robust multi-agent collision avoidance through scheduling. In: 2013 IEEE 52nd annual conference on decision and control (CDC)

  • Camara J, Girard A, Gossler G (2011) Safety controller synthesis for switched systems using multi-scale symbolic models. In: 2011 50th IEEE conference on decision and control and European control conference (CDC-ECC), pp 520–525

  • Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, 2nd edn. Springer

  • Colombo A (2014) A mathematical framework for cooperative collision avoidance of human-driven vehicles at intersections. In: International symposium on wireless communication systems

  • Colombo A, Del Vecchio D (2011a) Enforcing safety of cyberphysical systems using flatness and abstraction. SIGBED Rev 8(2):11–14

    Article  Google Scholar 

  • Colombo A, Del Vecchio D (2011b) Supervisory control of differentially flat systems based on abstraction. In: 2011 50th IEEE conference on decision and control and european control conference (CDC-ECC), pp 6134–6139

  • Colombo A, Del Vecchio D (2012) Efficient algorithms for collision avoidance at intersections. In: Proceedings of the 15th ACM international conference on hybrid systems: computation and control. HSCC ’12. ACM, New York, pp 145–154

  • Colombo A, Del Vecchio D (2015) Least restrictive supervisors for intersection collision avoidance: A scheduling approach. IEEE Trans Autom Control. doi:10.1109/TAC.2014.2381453

    MathSciNet  Google Scholar 

  • Colombo A, Girard A (2013) An approximate abstraction approach to safety control of differentially flat systems. In: Control conference (ECC), 2013 European, pp 4226–4231

  • Dallal E, Colombo A, Del Vecchio D, Lafortune S (2013a) Supervisory control for collision avoidance in vehicular networks using discrete event abstractions. In: American control conference (ACC), vol 2013, pp 4380–4386

  • Dallal E, Colombo A, Del Vecchio D, Lafortune S (2013b) Supervisory control for collision avoidance in vehicular networks with imperfect measurements. In: 2013 IEEE 52nd annual conference on decision and control (CDC), pp 6298–6303

  • Daws C, Tripakis S (1384) Model checking of real-time reachability properties using abstractions. In: Steffen B (ed) Tools and algorithms for the construction and analysis of systems, lecture notes in computer science. Springer, Berlin, pp 313–329

    Google Scholar 

  • Girard A, Pola G, Tabuada P (2010) Approximately bisimilar symbolic models for incrementally stable switched systems. IEEE Trans Autom Control 55(1):116–126

    Article  MathSciNet  MATH  Google Scholar 

  • Hadj-Alouane NB, Lafortune S, Lin F (1994) Variable lookahead supervisory control with state information. IEEE Trans Autom Control 39(12):2398–2410

    Article  MathSciNet  MATH  Google Scholar 

  • Hafner M, Del Vecchio D (2011) Computational tools for the safety control of a class of piecewise continuous systems with imperfect information on a partial order. SIAM J Control Optim 49(6):2463–2493

    Article  MathSciNet  MATH  Google Scholar 

  • Hafner M, Cunningham D, Caminiti L, Del Vecchio D (2013) Cooperative collision avoidance at intersections: algorithms and experiments. IEEE Trans Intell Transp Syst 14(3):1162–1175

    Article  Google Scholar 

  • Kowshik H, Caveney D, Kumar P (2011) Provable system wide safety in intelligent intersections. IEEE Trans Veh Technol 60(3):804–818

    Article  Google Scholar 

  • Nilsson P, Ozay N (2014) Incremental synthesis of switching protocols via abstraction refinement. In: 2014 IEEE 53rd annual conference on decision and control (CDC). IEEE, pp 6246–6253

  • Pola G, Tabuada P (2009) Symbolic models for nonlinear control systems: alternating approximate bisimulations. SIAM J Control Optim 48(2):719–733

    Article  MathSciNet  MATH  Google Scholar 

  • Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM J Control Optim 25(1):206–230

    Article  MathSciNet  MATH  Google Scholar 

  • Shoham S, Grumberg O (2003) A game-based framework for ctl counterexamples and 3-valued abstraction-refinement. In: Computer aided verification. Springer, pp 275–287

  • Tabuada P (2009) Verification and control of hybrid systems: a symbolic approach. Springer

  • Tomlin CJ, Mitchell I, Bayen AM, Oishi M (2003) Computational techniques for the verification of hybrid systems. Proc IEEE 91(7):986–1001

    Article  Google Scholar 

  • Verma R, Del Vecchio D (2011) Semiautonomous multivehicle safety. IEEE Robot Autom Mag 18(3):44–54

    Article  Google Scholar 

  • Wonham W (2013) Supervisory control of discrete-event systems, http://www.control.toronto.edu/people/profs/wonham/wonham.html

  • Wonham W, Ramadge P (1987) On the supremal controllable sublanguage of a given language. SIAM J Control Optim 25(3):637–659

    Article  MathSciNet  Google Scholar 

  • Zamani M, Pola G, Mazo M, Tabuada P (2012) Symbolic models for nonlinear control systems without stability assumptions. IEEE Trans Autom Control 57(7):1804–1809

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research supported in part by NSF grant CNS-0930081 and by the NSF Expeditions in Computing project ExCAPE: Expeditions in Computer Augmented Program Engineering (grant CCF-1138860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Dallal.

Appendix: Equations for checking safety

Appendix: Equations for checking safety

This appendix provides the equations that were used in the simulations of Section 9 for verifying the safety of DES transitions (Part 1), and the equations for the pair-wise capture sets for vehicles that cannot simultaneously be inside the intersection (Part 2).

Part 1: Verifying if \(A_{q, u_{c}}(t) \cap B = \emptyset \) for all t ∈ [0,τ].

In part 1 of this appendix, we prove the equations used for verifying the safety of transitions. As stated in Section 8, there are equations for each pair of vehicles \(i, j \in \mathcal {N}\), and verifying the safety of a DES transition for some initial state \(q \in \tilde {Q}\) and u c U c is done by verifying the corresponding equations for each pair of vehicles. We consider three cases (see Section 3): x i , x j ≤ 0, |x i x j | < γ (case 1a), x i , x j ≥ 0, |x i x j | < γ (case 1b), and \([-\alpha _{r_{i, 1}} < x_{i} < \alpha _{r_{i, 2}}] \wedge [-\alpha _{r_{j, 1}} < x_{j} < \alpha _{r_{j, 2}}]\) (case 2). The equations for these cases are provided in Props. (5)–(7), respectively. Note that there is no “case 1c” when x i ≤ 0 and x j ≥ 0, since the vehicles would then be on different roads.

We begin by defining the set \(A_{q, u_{c}}([0, \tau ]) := \bigcup _{t \in [0, \tau ]}A_{q, u_{c}}(t)\). Because the bad set is defined as a union of sets of linear inequalities, with one set for each pair of vehicles, we verify \(A_{q, u_{c}}([0, \tau ]) \cap B = \emptyset \) by considering each pair of vehicles in turn. For any vehicle \(i \in \mathcal {N}\) and any set PX, let π i (P) denote the projection of P onto the x i axis. Similarly, for any pair of vehicles \(i, j \in \mathcal {N}\) and a set PX, let π i, j (P) denote the projection of P onto the x i x j plane. Also recall the notation \(\underline {v}_{u_{c},i}\) and \(\overline {v}_{u_{c},i}\) defined in Eqs. 39 and 40.

Proposition 4

\((x_{i}, x_{j}) \in \pi _{i,j}(A_{q, u_{c}}([0, \tau ]))\) iff all of the following inequalities hold:

$$\begin{array}{@{}rcl@{}} & & x_{i} > q_{i} - \mu\tau/2 \end{array} $$
(41)
$$\begin{array}{@{}rcl@{}} & & x_{j} > q_{j} - \mu\tau/2 \end{array} $$
(42)
$$\begin{array}{@{}rcl@{}} & & x_{i} \le q_{i} + \mu\tau/2 + \overline{v}_{u_{c},i}\tau \end{array} $$
(43)
$$\begin{array}{@{}rcl@{}} & & x_{j} \le q_{j} + \mu\tau/2 + \overline{v}_{u_{c},j}\tau \end{array} $$
(44)
$$\begin{array}{@{}rcl@{}} & & \overline{v}_{u_{c},i} (x_{j} - q_{j} + \mu\tau/2) - \underline{v}_{u_{c},j} (x_{i} - q_{i} - \mu\tau/2) > 0 \end{array} $$
(45)
$$\begin{array}{@{}rcl@{}} & & \overline{v}_{u_{c},j} (x_{i} - q_{i} + \mu\tau/2) - \underline{v}_{u_{c},i} (x_{j} - q_{j} - \mu\tau/2) > 0 \end{array} $$
(46)

Proof

From Eqs. 3940 and the assumption that v m i n + d m i n μ > 0, we have that \(\pi _{i}(A_{q, u_{c}}(t)) = (q_{i} - \mu \tau /2 + \underline {v}_{u_{c},i}t, q_{i} + \mu \tau /2 + \overline {v}_{u_{c},i}t]\) is an interval whose lower and upper bounds are increasing in time, for every \(i \in \mathcal {N}\). It follows that, for any x i , the set \(\{t \in \mathbb {R} : x_{i} \in \pi _{i}(A_{q, u_{c}}(t)\}\) will have the form [t i, m i n , t i, m a x ), where \(t_{i, min} := \inf \{t \in \mathbb {R} : x_{i} \in \pi _{i}(A_{q, u_{c}}(t))\}\) and \(t_{i, max} := \sup \{t \in \mathbb {R} : x_{i} \in \pi _{i}(A_{q, u_{c}}(t))\}\) are given by:

$$\begin{array}{@{}rcl@{}} t_{i,min} & = & \frac{x_{i} - q_{i} - \mu\tau/2}{\overline{v}_{u_{c},i}} \end{array} $$
(47)
$$\begin{array}{@{}rcl@{}} t_{i,max} & = & \frac{x_{i} - q_{i} + \mu\tau/2}{\underline{v}_{u_{c},i}} \end{array} $$
(48)

Now define t j, m i n and t j, m a x analogously to t i, m i n and t i, m a x . Then:

$$\begin{array}{@{}rcl@{}} & & \exists t \in [0, \tau] \text{ s.t.} [x_{i} \in \pi_{i}(A_{q, u_{c}}(t))] \wedge [x_{j} \in \pi_{j}(A_{q, u_{c}}(t))]\\ & \Leftrightarrow & [0, \tau] \cap [t_{i,min}, t_{i,max}) \cap [t_{j,min}, t_{j,max}) \neq \emptyset\\ & \Leftrightarrow & \begin{array}{l} [t_{i,max} > 0] \wedge [t_{j,max} > 0] \wedge [t_{i,min} \le \tau] \wedge [t_{j,min} \le \tau]\\ \quad \wedge [t_{j,max} > t_{i,min}] \wedge [t_{i,max} > t_{j,min}] \end{array} \end{array} $$

and these last six inequalities give Eqs. 4146, in order. □

As stated above, we can check if \(A_{q, u_{c}}([0, \tau ]) \cap B = \emptyset \) by considering each pair of vehicles in turn. There are three types of constraints to consider:

Case 1a: x i , x j ≤ 0, |x i x j | < γ.

Lemma 2

Consider any \(\underline {x}_{i}, \overline {x}_{i}, \underline {x}_{j}, \overline {x}_{j} \in \mathbb {R}\) . Then:

$$ \begin{array}{l} \quad (\exists x_{i} \in (\underline{x}_{i}, \overline{x}_{i}])(\exists x_{j} \in (\underline{x}_{j}, \overline{x}_{j}])(x_{i} \le 0 \wedge x_{j} \le 0 \wedge |x_{i} - x_{j}| < \gamma)\\ \Leftrightarrow [\underline{x}_{i} < \overline{x}_{i} \wedge \underline{x}_{i} < 0 \wedge \underline{x}_{j} < \overline{x}_{j} \wedge \underline{x}_{j} < 0 \wedge \underline{x}_{i} - \overline{x}_{j} < \gamma \wedge \underline{x}_{j} - \overline{x}_{i} < \gamma] \end{array} $$
(49)

Proof

(⇒):

$$\begin{array}{@{}rcl@{}} x_{i} \in (\underline{x}_{i}, \overline{x}_{i}] \Rightarrow \underline{x}_{i} < x_{i} \leq \overline{x}_{i} & \Rightarrow & \underline{x}_{i} < \overline{x}_{i}\\ \underline{x}_{i} < x_{i} \wedge x_{i} \le 0 & \Rightarrow & \underline{x}_{i} < 0\\ x_{j} \in (\underline{x}_{j}, \overline{x}_{j}] \Rightarrow \underline{x}_{j} < x_{j} \leq \overline{x}_{j} & \Rightarrow & \underline{x}_{j} < \overline{x}_{j}\\ \underline{x}_{j} < x_{j} \wedge x_{j} \le 0 & \Rightarrow & \underline{x}_{j} < 0\\ x_{i} - x_{j} < \gamma \wedge \underline{x}_{i} < x_{i} \wedge x_{j} \le \overline{x}_{j} & \Rightarrow & \underline{x}_{i} - \overline{x}_{j} < \gamma\\ x_{j} - x_{i} < \gamma \wedge \underline{x}_{j} < x_{j} \wedge x_{i} \le \overline{x}_{i} & \Rightarrow & \underline{x}_{j} - \overline{x}_{i} < \gamma\\ \end{array} $$

(⇐) It cannot be that both \(\underline {x}_{i} - \underline {x}_{j} \geq \gamma \) and \(\underline {x}_{j} - \underline {x}_{i} \geq \gamma \), as this would imply 0 ≥ 2γ>0. Thus, at least one of \(\underline {x}_{i} - \underline {x}_{j} < \gamma \), or \(\underline {x}_{j} - \underline {x}_{i} < \gamma \) holds. If they both hold, we may take \(x_{i} = \underline {x}_{i} + \epsilon \) and \(x_{j} = \underline {x}_{j} + \epsilon \) for some sufficiently small 𝜖>0 and we are done. Suppose without loss of generality then that \(\underline {x}_{i} - \underline {x}_{j} < \gamma \) but \(\underline {x}_{j} - \underline {x}_{i} \geq \gamma \). Let \(\underline {\overline {x}}_{i} = \underline {x}_{j} - \gamma \). Thus, \(\underline {x}_{j} - \underline {\overline {x}}_{i} = \gamma \), \(\underline {\overline {x}}_{i} - \underline {x}_{j} = -\gamma < \gamma \) and \(\underline {\overline {x}}_{i} < 0\) (since \(\underline {x}_{j} < 0\)). We may therefore take \(x_{i} = \underline {\overline {x}}_{i} + 2\epsilon \) and \(x_{j} = \underline {x}_{j} + \epsilon \) for some sufficiently small 𝜖>0 and we are done. □

Proposition 5

The set \(\{(x_{i}, x_{j}) \in \pi _{i,j}(A_{q, u_{c}}([0, \tau ])) : x_{i}, x_{j} \le 0 \wedge |x_{i} - x_{j}| < \gamma \}\) is non-empty iff all of the following inequalities hold:

$$\begin{array}{@{}rcl@{}} & & q_{i} < \mu\tau/2 \end{array} $$
(50)
$$\begin{array}{@{}rcl@{}} & & q_{j} < \mu\tau/2 \end{array} $$
(51)
$$\begin{array}{@{}rcl@{}} & & \underline{v}_{u_{c},j}(q_{i} + \mu\tau/2 + \gamma) - \max\{\overline{v}_{u_{c},i}, \underline{v}_{u_{c},j}\}(q_{j} - \mu\tau/2) > 0 \end{array} $$
(52)
$$\begin{array}{@{}rcl@{}} & & \underline{v}_{u_{c},i}(q_{j} + \mu\tau/2 + \gamma) - \max\{\overline{v}_{u_{c},j}, \underline{v}_{u_{c},i}\}(q_{i} - \mu\tau/2) > 0 \end{array} $$
(53)
$$\begin{array}{@{}rcl@{}} & & [q_{i} + \mu\tau/2 + \gamma + \tau\max\{\overline{v}_{u_{c},i}, \underline{v}_{u_{c},j}\}] - [q_{j} - \mu\tau/2 + \tau\underline{v}_{u_{c},j}] > 0 \end{array} $$
(54)
$$\begin{array}{@{}rcl@{}} & & [q_{j} + \mu\tau/2 + \gamma + \tau\max\{\overline{v}_{u_{c},j}, \underline{v}_{u_{c},i}\}] - [q_{i} - \mu\tau/2 + \tau\underline{v}_{u_{c},i}] > 0 \end{array} $$
(55)

Proof

Let \(\pi _{i}(A_{q, u_{c}}(t)) = (\underline {x}_{i}(t), \overline {x}_{i}(t)]\) and \(\pi _{j}(A_{q, u_{c}}(t)) = (\underline {x}_{j}(t), \overline {x}_{j}(t)]\). By Lemma 2, it is necessary and sufficient to find some t ∈ [0,τ] such that \(\underline {x}_{i}(t) < 0\), \(\underline {x}_{j}(t) < 0\), \(\underline {x}_{i}(t) - \overline {x}_{j}(t) < \gamma \), and \(\underline {x}_{j}(t) - \overline {x}_{i}(t) < \gamma \). Now define t i, m a x , t j, m a x , t ij , and t ji by \(\underline {x}_{i}(t_{i,max}) = 0\), \(\underline {x}_{j}(t_{j,max}) = 0\), \(\underline {x}_{i}(t_{i-j}) - \overline {x}_{j}(t_{i-j}) = \gamma \), and \(\underline {x}_{j}(t_{j-i}) - \overline {x}_{i}(t_{j-i}) = \gamma \). These are given by:

$$\begin{array}{@{}rcl@{}} t_{i,max} & = & -\frac{q_{i} - \mu\tau/2}{\underline{v}_{u_{c},i}} \end{array} $$
(56)
$$\begin{array}{@{}rcl@{}} t_{j,max} & = & -\frac{q_{j} - \mu\tau/2}{\underline{v}_{u_{c},j}} \end{array} $$
(57)
$$\begin{array}{@{}rcl@{}} t_{i-j} & = & \frac{(q_{i} - \mu\tau/2) - (q_{j} + \mu\tau/2 + \gamma)}{\overline{v}_{u_{c},j} - \underline{v}_{u_{c},i}} \end{array} $$
(58)
$$\begin{array}{@{}rcl@{}} t_{j-i} & = & \frac{(q_{j} - \mu\tau/2) - (q_{i} + \mu\tau/2 + \gamma)}{\overline{v}_{u_{c},i} - \underline{v}_{u_{c},j}} \end{array} $$
(59)

Obviously, t ij is only well defined when \(\overline {v}_{u_{c},j} \neq \underline {v}_{u_{c},i}\) and t ji is only well defined when \(\overline {v}_{u_{c},i} \neq \underline {v}_{u_{c},j}\). Because \(\underline {x}_{i}(t)\) and \(\underline {x}_{j}(t)\) are increasing in time, we have that:

$$\begin{array}{@{}rcl@{}} \underline{x}_{i}(t) < 0 & \Leftrightarrow & t < t_{i,max} \end{array} $$
(60)
$$\begin{array}{@{}rcl@{}} \underline{x}_{j}(t) < 0 & \Leftrightarrow & t < t_{j,max} \end{array} $$
(61)

On the other hand, \(\underline {x}_{i}(t) - \overline {x}_{j}(t)\) is increasing in time if \(\overline {v}_{u_{c},j} < \underline {v}_{u_{c},i}\), decreasing in time if \(\overline {v}_{u_{c},j} > \underline {v}_{u_{c},i}\), and constant if \(\overline {v}_{u_{c},j} = \underline {v}_{u_{c},i}\). It therefore follows that:

$$ \underline{x}_{i}(t) - \overline{x}_{j}(t) < \gamma \Leftrightarrow \left\{\begin{array}{ll} t < t_{i-j}, & \overline{v}_{u_{c},j} < \underline{v}_{u_{c},i}\\ t > t_{i-j}, & \overline{v}_{u_{c},j} > \underline{v}_{u_{c},i}\\ (q_{j} + \mu\tau/2 + \gamma) > (q_{i} - \mu\tau/2), & \overline{v}_{u_{c},j} = \underline{v}_{u_{c},i} \end{array}\right. $$
(62)

Similarly,

$$ \underline{x}_{j}(t) - \overline{x}_{i}(t) < \gamma \Leftrightarrow \left\{\begin{array}{ll} t < t_{j-i}, & \overline{v}_{u_{c},i} < \underline{v}_{u_{c},j}\\ t > t_{j-i}, & \overline{v}_{u_{c},i} > \underline{v}_{u_{c},j}\\ (q_{i} + \mu\tau/2 + \gamma) > (q_{j} - \mu\tau/2), & \overline{v}_{u_{c},i} = \underline{v}_{u_{c},j} \end{array}\right. $$
(63)

This would give nine cases to consider, but three are impossible, since \(\overline {v}_{u_{c},j} < \underline {v}_{u_{c},i} \Rightarrow \underline {v}_{u_{c},j} \leq \overline {v}_{u_{c},j} < \underline {v}_{u_{c},i} \leq \overline {v}_{u_{c},i} \Rightarrow \underline {v}_{u_{c},j} < \overline {v}_{u_{c},i}\) and similarly, \(\overline {v}_{u_{c},i} < \underline {v}_{u_{c},j} \Rightarrow \underline {v}_{u_{c},i} < \overline {v}_{u_{c},j}\). We will consider each of the six remaining cases in turn, but first prove the following claims:

$$\begin{array}{@{}rcl@{}} t_{j-i} < t_{j,max} \wedge t_{i,max} > 0 & \Rightarrow & t_{j-i} < t_{i,max} \end{array} $$
(64)
$$\begin{array}{@{}rcl@{}} t_{i-j} < t_{i,max} \wedge t_{j,max} > 0 & \Rightarrow & t_{i-j} < t_{j,max} \end{array} $$
(65)
$$\begin{array}{@{}rcl@{}} t_{i-j} > 0 \wedge \overline{v}_{u_{c},j} < \underline{v}_{u_{c},i} & \Rightarrow & t_{j-i} < t_{i-j} \end{array} $$
(66)
$$\begin{array}{@{}rcl@{}} t_{j-i} > 0 \wedge \overline{v}_{u_{c},i} < \underline{v}_{u_{c},j} & \Rightarrow & t_{i-j} < t_{j-i} \end{array} $$
(67)

Clearly, Eq. 64 holds if t ji ≤ 0. If t ji > 0, then \(\underline {x}_{i}(t_{j-i}) < \overline {x}_{i}(t_{j-i}) = \underline {x}_{j}(t_{j-i}) - \gamma < \underline {x}_{j}(t_{j-i})\). From Eq. 61, we have that \(t_{j-i} < t_{j,max} \Leftrightarrow \underline {x}_{j}(t_{j-i}) < 0\). Hence, \(\underline {x}_{i}(t_{j-i}) < \underline {x}_{j}(t_{j-i}) < 0\) and therefore t ji < t i, m a x follows from Eq. 60, proving Eq. 64. Equation 65 is proven similarly. To prove Eq. 66, suppose to the contrary that t ji t ij > 0. As before, \(t_{j-i} > 0 \Rightarrow \underline {x}_{i}(t_{j-i}) < \underline {x}_{j}(t_{j-i})\). From \(\overline {v}_{u_{c},j} < \underline {v}_{u_{c},i}\), t ji t ij , and Eq. 62, we have that \(\underline {x}_{i}(t_{j-i}) \geq \overline {x}_{j}(t_{j-i}) + \gamma > \overline {x}_{j}(t_{j-i})\). Thus we have \(\underline {x}_{j}(t_{j-i}) > \underline {x}_{i}(t_{j-i}) > \overline {x}_{j}(t_{j-i})\), which is a contradiction since it cannot be that \(\underline {x}_{j}(t_{j-i}) > \overline {x}_{j}(t_{j-i})\) for t ji > 0, proving Eq. 66. Equation 67 is proven similarly. We now proceed with the six cases. In what follows, note that Eqs. 52 and 54 both reduce to (q i + μ τ/2 + γ)>(q j μ τ/2) when \(\overline {v}_{u_{c},i} \leq \underline {v}_{u_{c},j}\) and that Eqs. 53 and 55 similarly both reduce to (q j + μ τ/2 + γ)>(q i μ τ/2) when \(\overline {v}_{u_{c},j} \leq \underline {v}_{u_{c},i}\).

Case (i): \(\overline {v}_{u_{c},j} = \underline {v}_{u_{c},i}\) and \(\overline {v}_{u_{c},i} = \underline {v}_{u_{c},j}\).

$$\begin{array}{llr} & \exists t \in [0, \tau] \text{ s.t.} [\underline{x}_{i}(t) < 0] \wedge [\underline{x}_{j}(t) < 0] &\\ & \quad \wedge [\underline{x}_{i}(t) - \overline{x}_{j}(t) < \gamma] \wedge [\underline{x}_{j}(t) - \overline{x}_{i}(t) < \gamma] &\\ \Leftrightarrow & \begin{array}{l} [0, \tau] \cap (-\infty, t_{i,max}) \cap (-\infty, t_{j,max}) \neq \emptyset\\ \quad \wedge [(q_{j} + \mu\tau/2 + \gamma) > (q_{i} - \mu\tau/2)]\\ \quad \wedge [(q_{i} + \mu\tau/2 + \gamma) > (q_{j} - \mu\tau/2)] \end{array} & \text{(Eqs. (60)--(63))}\\ \Leftrightarrow & \begin{array}{l} [0 < t_{i,max}] \wedge [0 < t_{j,max}]\\ \quad \wedge [(q_{j} + \mu\tau/2 + \gamma) > (q_{i} - \mu\tau/2)]\\ \quad \wedge [(q_{i} + \mu\tau/2 + \gamma) > (q_{j} - \mu\tau/2)] \end{array}\\ \Leftrightarrow & [(50)] \wedge [(51)] \wedge [(53) \wedge (55)] \wedge [(52) \wedge (54)] \end{array}$$

Case (ii): \(\overline {v}_{u_{c},j} > \underline {v}_{u_{c},i}\) and \(\overline {v}_{u_{c},i} = \underline {v}_{u_{c},j}\).

$$\begin{array}{llr} & \exists t \in [0, \tau] \text{ s.t.} [\underline{x}_{i}(t) < 0] \wedge [\underline{x}_{j}(t) < 0] &\\ & \quad \wedge [\underline{x}_{i}(t) - \overline{x}_{j}(t) < \gamma] \wedge [\underline{x}_{j}(t) - \overline{x}_{i}(t) < \gamma]\\ \Leftrightarrow & \begin{array}{l} [0, \tau] \cap (-\infty, t_{i,max}) \cap (-\infty, t_{j,max}) \cap (t_{i-j}, \infty) \neq \emptyset\\ \quad \wedge [(q_{i} + \mu\tau/2 + \gamma) > (q_{j} - \mu\tau/2)] \end{array} \hspace*{50pt} \text{(Eqs. (60)--(63))}\\ \Leftrightarrow & \begin{array}{l} [0 < t_{i,max}] \wedge [0 < t_{j,max}] \wedge [t_{i-j} < \tau] \wedge [t_{i-j} < t_{i,max}] \wedge [t_{i-j} < t_{j,max}]\\ \quad \wedge [(q_{i} + \mu\tau/2 + \gamma) > (q_{j} - \mu\tau/2)] \end{array}\\ \Leftrightarrow & \begin{array}{l} [0 < t_{i,max}] \wedge [0 < t_{j,max}] \wedge [t_{i-j} < \tau] \wedge [t_{i-j} < t_{i,max}]\\ \quad \wedge [(q_{i} + \mu\tau/2 + \gamma) > (q_{j} - \mu\tau/2)] \end{array} \hspace*{60pt} \text{(Eq. (65))}\\ \Leftrightarrow & [(50)] \wedge [(51)] \wedge [(55)] \wedge [(53)] \wedge [(52) \wedge (54)] \end{array}$$

Case (iii): \(\overline {v}_{u_{c},j} = \underline {v}_{u_{c},i}\) and \(\overline {v}_{u_{c},i} > \underline {v}_{u_{c},j}\).

This is case is symmetrical to Case (ii).

Case (iv): \(\overline {v}_{u_{c},j} < \underline {v}_{u_{c},i}\) and \(\overline {v}_{u_{c},i} > \underline {v}_{u_{c},j}\).

$$\begin{array}{llr} & \exists t \in [0, \tau] \text{ s.t.} [\underline{x}_{i}(t) < 0] \wedge [\underline{x}_{j}(t) < 0] &\\ & \quad \wedge [\underline{x}_{i}(t) - \overline{x}_{j}(t) < \gamma] \wedge [\underline{x}_{j}(t) - \overline{x}_{i}(t) < \gamma] &\\ \Leftrightarrow & [0, \tau] \cap (-\infty, t_{i,max}) \cap (-\infty, t_{j,max}) \cap (-\infty, t_{i-j}) \cap (t_{j-i}, \infty) \neq \emptyset & \text{(Eqs. (60)--(63))}\\ \Leftrightarrow & \begin{array}{l} [0 < t_{i,max}] \wedge [0 < t_{j,max}] \wedge [0 < t_{i-j}] \wedge [t_{j-i} < \tau]\\ \quad\wedge [t_{j-i} < t_{i,max}] \wedge [t_{j-i} < t_{j,max}] \wedge [t_{j-i} < t_{i-j}] \end{array}\\ \Leftrightarrow & [0 < t_{i,max}] \wedge [0 < t_{j,max}] \wedge [0 < t_{i-j}] \wedge [t_{j-i} < \tau] \wedge [t_{j-i} < t_{j,max}] & \text{(Eqs. (64), (66))}\\ \Leftrightarrow & [(50)] \wedge [(51)] \wedge [(53) \wedge (55)] \wedge [(54)] \wedge [(52)] \end{array}$$

Case (v): \(\overline {v}_{u_{c},j} > \underline {v}_{u_{c},i}\) and \(\overline {v}_{u_{c},i} < \underline {v}_{u_{c},j}\).

This is case is symmetrical to Case (iv).

Case (vi): \(\overline {v}_{u_{c},j} > \underline {v}_{u_{c},i}\) and \(\overline {v}_{u_{c},i} > \underline {v}_{u_{c},j}\).

$$\begin{array}{llr} & \exists t \in [0, \tau] \text{ s.t.} [\underline{x}_{i}(t) < 0] \wedge [\underline{x}_{j}(t) < 0] &\\ & \quad\wedge [\underline{x}_{i}(t) - \overline{x}_{j}(t) < \gamma] \wedge [\underline{x}_{j}(t) - \overline{x}_{i}(t) < \gamma] &\\ \Leftrightarrow & [0, \tau] \cap (-\infty, t_{i,max}) \cap (-\infty, t_{j,max}) \cap (t_{i-j}, \infty) \cap (t_{j-i}, \infty) \neq \emptyset & \text{(Eqs. (60)--(63))}\\ \Leftrightarrow & \begin{array}{l} [0 < t_{i,max}] \wedge [0 < t_{j,max}]\\ \quad\wedge [t_{j-i} < \tau] \wedge [t_{j-i} < t_{i,max}] \wedge [t_{j-i} < t_{j,max}]\\ \quad\wedge [t_{i-j} < \tau] \wedge [t_{i-j} < t_{i,max}] \wedge [t_{i-j} < t_{j,max}] \end{array}\\ \Leftrightarrow & \begin{array}{l} [0 < t_{i,max}] \wedge [0 < t_{j,max}]\\ \quad\wedge [t_{j-i} < \tau] \wedge [t_{j-i} < t_{j,max}]\\ \quad\wedge [t_{i-j} < \tau] \wedge [t_{i-j} < t_{i,max}] \end{array} & \text{(Eqs. (64), (65))}\\ \Leftrightarrow & [(50)] \wedge [(51)] \wedge [(54)] \wedge [(52)] \wedge [(55)] \wedge [(53)] \end{array}$$

Case 1b: x i , x j ≥ 0, |x i x j | < γ.

Proposition 6

The set \(\{(x_{i}, x_{j}) \in \pi _{i,j}(A_{q, u_{c}}([0, \tau ])) : x_{i}, x_{j} \ge 0 \wedge |x_{i} - x_{j}| < \gamma \}\) is non-empty iff all of the following inequalities hold:

$$\begin{array}{@{}rcl@{}} & & q_{i} \geq - \mu\tau/2 - \overline{v}_{u_{c},i}\tau \end{array} $$
(68)
$$\begin{array}{@{}rcl@{}} & & q_{j} \geq - \mu\tau/2 - \overline{v}_{u_{c},j}\tau \end{array} $$
(69)
$$\begin{array}{@{}rcl@{}} & & \begin{array}{l} \max\{\overline{v}_{u_{c},i}, \underline{v}_{u_{c},j}\}(q_{i} + \mu\tau/2 + \tau \overline{v}_{u_{c},i})\\ \quad - \overline{v}_{u_{c},i}(q_{j} - \mu\tau/2 - \gamma + \tau \underline{v}_{u_{c},j}) > 0 \end{array} \end{array} $$
(70)
$$\begin{array}{@{}rcl@{}} & &\begin{array}{l} \max\{\overline{v}_{u_{c},j}, \underline{v}_{u_{c},i}\}(q_{j} + \mu\tau/2 + \tau \overline{v}_{u_{c},j})\\ \quad - \overline{v}_{u_{c},j}(q_{i} - \mu\tau/2 - \gamma + \tau \underline{v}_{u_{c},i}) > 0 \end{array} \end{array} $$
(71)
$$\begin{array}{@{}rcl@{}} & &\begin{array}{l} (q_{i} + \mu\tau/2 + \tau\max\{\underline{v}_{u_{c}, j}, \overline{v}_{u_{c}, i}\})\\ \quad - (q_{j} - \mu\tau/2 - \gamma + \tau\underline{v}_{u_{c}, j}) > 0 \end{array} \end{array} $$
(72)
$$\begin{array}{@{}rcl@{}} & &\begin{array}{l} (q_{j} + \mu\tau/2 + \tau\max\{\underline{v}_{u_{c}, i}, \overline{v}_{u_{c}, j}\})\\ \quad - (q_{i} - \mu\tau/2 - \gamma + \tau\underline{v}_{u_{c}, i}) > 0 \end{array} \end{array} $$
(73)

Proof

The proof is similar to that of Prop. 5, and is omitted. □

Case 2: \([-\alpha _{r_{i, 1}} < x_{i} < \alpha _{r_{i, 2}}] \wedge [-\alpha _{r_{j, 1}} < x_{j} < \alpha _{r_{j, 2}}]\).

Proposition 7

The set \(\{(x_{i}, x_{j}) \in \pi _{i,j}(A_{q, u_{c}}([0, \tau ])): [-\alpha _{r_{i, 1}} < x_{i} < \alpha _{r_{i, 2}}] \wedge [-\alpha _{r_{j, 1}} < x_{j} < \alpha _{r_{j, 2}}]\}\) is non-empty iff all of the following inequalities hold:

$$\begin{array}{@{}rcl@{}} & & q_{i} < \alpha_{r_{i,2}} + \mu\tau/2 \end{array} $$
(74)
$$\begin{array}{@{}rcl@{}} & & q_{j} < \alpha_{r_{j,2}} + \mu\tau/2 \end{array} $$
(75)
$$\begin{array}{@{}rcl@{}} & & q_{i} > -\alpha_{r_{i,1}} - \mu\tau/2 - \overline{v}_{u_{c},i}\tau \end{array} $$
(76)
$$\begin{array}{@{}rcl@{}} & & q_{j} > -\alpha_{r_{j,1}} - \mu\tau/2 - \overline{v}_{u_{c},j}\tau \end{array} $$
(77)
$$\begin{array}{@{}rcl@{}} & & \underline{v}_{u_{c},j} (q_{i} + \mu\tau/2 + \alpha_{r_{i,1}}) - \overline{v}_{u_{c},i} (q_{j} - \mu\tau/2 - \alpha_{r_{j,2}}) > 0 \end{array} $$
(78)
$$\begin{array}{@{}rcl@{}} & & \underline{v}_{u_{c},i} (q_{j} + \mu\tau/2 + \alpha_{r_{j,1}}) - \overline{v}_{u_{c},j} (q_{i} - \mu\tau/2 - \alpha_{r_{i,2}}) > 0 \end{array} $$
(79)

Proof

We proceed similarly to the proof of Prop. 4. From Eqs. 3940 and the assumption that v m i n + d m i n μ>0, we have that \(\pi _{i}(A_{q, u_{c}}(t)) = (q_{i} - \mu \tau /2 + \underline {v}_{u_{c},i}t, q_{i} + \mu \tau /2 + \overline {v}_{u_{c},i}t]\) is an interval whose lower and upper bounds are increasing in time, for every \(i \in \mathcal {N}\). It follows that the set \(\phantom {\dot {i}\{t \in \mathbb {R} : (-\alpha _{r_{i, 1}}, \alpha _{r_{i, 2}}) \cap \pi _{i}(A_{\!}q, u_{c}}(t)) \neq \emptyset \}\) will have the form \((t_{i,min}^{2}, t_{i,max}^{2})\), where \(t_{i, min}^{2} := \inf \{t \in \mathbb {R} : (-\alpha _{r_{i, 1}}, \alpha _{r_{i, 2}}) \cap \pi _{i}(A_{q, u_{c}}(t)) \neq \emptyset \}\) and \(t_{i, max}^{2} := \sup \{t \in \mathbb {R} : (-\alpha _{r_{i, 1}}, \alpha _{r_{i, 2}}) \cap \pi _{i}(A_{q, u_{c}}(t)) \neq \emptyset \}\) are given by:

$$\begin{array}{@{}rcl@{}} t_{i,min}^{2} & = & \frac{-q_{i} - \alpha_{r_{i,1}} - \mu\tau/2}{\overline{v}_{u_{c},i}} \end{array} $$
(80)
$$\begin{array}{@{}rcl@{}} t_{i,max}^{2} & = & \frac{-q_{i} + \alpha_{r_{i,2}} + \mu\tau/2}{\underline{v}_{u_{c},i}} \end{array} $$
(81)

Now define \(t_{j,min}^{2}\) and \(t_{j,max}^{2}\) analogously to \(t_{i,min}^{2}\) and \(t_{i,max}^{2}\). Then:

$$\begin{array}{@{}rcl@{}} & & \exists t \in [0, \tau] \text{ s.t.} [(-\alpha_{r_{i, 1}}, \alpha_{r_{i, 2}}) \cap \pi_{i}(A_{q, u_{c}}(t))] \wedge [(-\alpha_{r_{j, 1}}, \alpha_{r_{j, 2}}) \cap \pi_{j}(A_{q, u_{c}}(t))]\\ & \Leftrightarrow & [0, \tau] \cap (t_{i,min}^{2}, t_{i,max}^{2}) \cap (t_{j,min}^{2}, t_{j,max}^{2}) \neq \emptyset\\ & \Leftrightarrow & \begin{array}{l} [t_{i,max}^{2} > 0] \wedge [t_{j,max}^{2} > 0] \wedge [t_{i,min}^{2} < \tau] \wedge [t_{j,min}^{2} < \tau]\\ \quad \wedge t_{j,max}^{2} > t_{i,min}^{2} \wedge t_{i,max}^{2} > t_{j,min}^{2} \end{array} \end{array} $$

and these last six inequalities give Eqs. 7479, in order. □

Part 2: The Capture Set Optimization

Here we describe the capture set optimization which replaces subroutines NatVic and ContLoss in Alg. 2. The optimization is based on the observation that the bad set is convex (rectangular) for a pair of vehicles which cannot simultaneously be inside the intersection (Case 2 of Part 1). Thus it is straight-forward to compute the capture set of states from which no supervisor can ensure avoidance of the bad set for such a pair of vehicles. Before stating the theorem, we define the minimal and maximal velocities which can be forced by the supervisor, given that it does not control the uncontrolled vehicles or the disturbance:

$$\begin{array}{@{}rcl@{}} \underline{v}_{i}^{c} & = & \left\{\begin{array}{ll}v_{min} + d_{max}, & \text{vehicle \textit{i} is controlled}\\v_{max} + d_{max}, & \text{vehicle \textit{i} is uncontrolled}\end{array}\right. \end{array} $$
(82)
$$\begin{array}{@{}rcl@{}} \overline{v}_{i}^{c} & = & \left\{\begin{array}{ll}v_{max} + d_{min}, & \text{vehicle \textit{i} is controlled}\\v_{min} + d_{min}, & \text{vehicle \textit{i} is uncontrolled}\end{array}\right. \end{array} $$
(83)

Proposition 8

Given two vehicles i and j on different roads, there does not exist any safe and non-deadlocking supervisor \(\sigma : \tilde {Q} \rightarrow 2^{U_{c}}\) with σ(q) ≠ ∅, for any \(q \in \tilde {Q}\) such that ∃x∈ℓ −1 (q) satisfying all of the following equations:

$$\begin{array}{@{}rcl@{}} & & x_{i} < \alpha_{r_{i,2}} \end{array} $$
(84)
$$\begin{array}{@{}rcl@{}} & & x_{j} < \alpha_{r_{j,2}} \end{array} $$
(85)
$$\begin{array}{@{}rcl@{}} & & \overline{v}_{i}^{c}(x_{j} + \alpha_{r_{j,1}}) - \underline{v}_{j}^{c}(x_{i} - \alpha_{r_{i,2}}) > 0 \end{array} $$
(86)
$$\begin{array}{@{}rcl@{}} & & \overline{v}_{j}^{c}(x_{i} + \alpha_{r_{i,1}}) - \underline{v}_{i}^{c}(x_{j} - \alpha_{r_{j,2}}) > 0 \end{array} $$
(87)

Proof

First, it follows from the definitions of \(\underline {v}_{i}^{c}\) and \(\overline {v}_{i}^{c}\) that, for any x satisfying Eqs. 8487 and u c U c , there exists some u u c U u c and d:[0,τ]→D such that x(t) = x + u(t/τ) + d(t) either remains inside the set given by Eqs. 8487 for t ∈ [0,τ], or enters the bad set for some t ∈ [0,τ] (see Fig. 9). Second, it follows from v m i n + d m i n > 0 that no control strategy can prevent the vehicles from eventually entering the set \(x_{i} > -\alpha _{r_{i,1}} \wedge x_{j} > -\alpha _{r_{j,1}}\). Thus either the system eventually reaches some state \(q^{\prime } \in \tilde {Q}\) such that σ(q ) = , or σ allows the system to enter the bad set. □

Fig. 9
figure 9

The capture sets of Eqs. 8497 in the open (left) and closed (right) cases. The blue square denotes the bad set. The set of Eqs. 8487 is depicted with solid lines, and its inflation by μ τ/2 is depicted in dashed lines. Right: If d m i n and d m a x are integer multiples of μ, then Eqs. 96 and 97 are unnecessary, which is shown by the dotted lines

To obtain the set of states q for which −1(q) is contained in the set of Eqs. 8487, we can take this set and “deflate it” by μ τ/2, to capture the effect of the discretization. This yields the equations used in the capture set version of the NatVic subroutine in Alg. 2. Similarly, we can obtain the set of states q for which there exists some x −1(q) satisfying Eqs. 8487 by taking this set and “inflating it” by μ τ/2. This yields the equations used in the capture set version of the ContLoss subroutine in Algorithm 2.

In the former case (NatVic), the equations become

$$\begin{array}{@{}rcl@{}} & & q_{i} < \alpha_{r_{i,2}} - \mu\tau/2 \end{array} $$
(88)
$$\begin{array}{@{}rcl@{}} & & q_{j} < \alpha_{r_{j,2}} - \mu\tau/2 \end{array} $$
(89)
$$\begin{array}{@{}rcl@{}} & & \overline{v}_{i}^{c}(q_{j} + \alpha_{r_{j,1}} - \mu\tau/2) - \underline{v}_{j}^{c}(q_{i} - \alpha_{r_{i,2}} + \mu\tau/2) > 0 \end{array} $$
(90)
$$\begin{array}{@{}rcl@{}} & & \overline{v}_{j}^{c}(q_{i} + \alpha_{r_{i,1}} - \mu\tau/2) - \underline{v}_{i}^{c}(q_{j} - \alpha_{r_{j,2}} + \mu\tau/2) > 0 \end{array} $$
(91)

The latter case (ContLoss) results in one of two possibilities, depending on whether the set of Eqs. 8487 is open or closed. The set will be open if \(\frac {\overline {v}_{j}^{c}}{\underline {v}_{i}^{c}} \leq \frac {\underline {v}_{j}^{c}}{\overline {v}_{i}^{c}}\) and closed if \(\frac {\overline {v}_{j}^{c}}{\underline {v}_{i}^{c}} > \frac {\underline {v}_{j}^{c}}{\overline {v}_{i}^{c}}\). If the set is open, the equations become:

$$\begin{array}{@{}rcl@{}} & & q_{i} < \alpha_{r_{i,2}} + \mu\tau/2 \end{array} $$
(92)
$$\begin{array}{@{}rcl@{}} & & q_{j} < \alpha_{r_{j,2}} + \mu\tau/2 \end{array} $$
(93)
$$\begin{array}{@{}rcl@{}} & & \overline{v}_{i}^{c}(q_{j} + \alpha_{r_{j,1}} + \mu\tau/2) - \underline{v}_{j}^{c}(q_{i} - \alpha_{r_{i,2}} - \mu\tau/2) > 0 \end{array} $$
(94)
$$\begin{array}{@{}rcl@{}} & & \overline{v}_{j}^{c}(q_{i} + \alpha_{r_{i,1}} + \mu\tau/2) - \underline{v}_{i}^{c}(q_{j} - \alpha_{r_{j,2}} - \mu\tau/2) > 0 \end{array} $$
(95)

If the set is closed, then two more equations must be added in general (see Fig. 9)

$$\begin{array}{@{}rcl@{}} & & q_{i} > \frac{\overline{v}_{i}^{c}\overline{v}_{j}^{c}\alpha_{r_{i,1}} + \overline{v}_{i}^{c}\underline{v}_{i}^{c}\alpha_{r_{j,2}} + \overline{v}_{i}^{c}\underline{v}_{i}^{c}\alpha_{r_{j,1}} + \underline{v}_{i}^{c}\underline{v}_{j}^{c}\alpha_{r_{i,2}}}{\overline{v}_{i}^{c}\overline{v}_{j}^{c} - \underline{v}_{i}^{c}\underline{v}_{j}^{c}} - \mu\tau/2 \end{array} $$
(96)
$$\begin{array}{@{}rcl@{}} & & q_{j} > \frac{\overline{v}_{i}^{c}\overline{v}_{j}^{c}\alpha_{r_{j,1}} + \overline{v}_{j}^{c}\underline{v}_{j}^{c}\alpha_{r_{i,2}} + \overline{v}_{j}^{c}\underline{v}_{j}^{c}\alpha_{r_{i,1}} + \underline{v}_{i}^{c}\underline{v}_{j}^{c}\alpha_{r_{j,2}}}{\overline{v}_{i}^{c}\overline{v}_{j}^{c} - \underline{v}_{i}^{c}\underline{v}_{j}^{c}} - \mu\tau/2 \end{array} $$
(97)

If d m i n and d m a x are integer multiples of μ, then it can be shown these last two equations become unnecessary. We first prove a lemma.

Lemma 3

If d min and d max are integer multiples of μ, \(\frac {\overline {v}_{j}^{c}}{\underline {v}_{i}^{c}} > \frac {\underline {v}_{j}^{c}}{\overline {v}_{i}^{c}}\) , and \(q \in \tilde {Q}\) satisfies Eqs. 94 and 95 then, for any u c ∈U c , there exists \(q^{\prime } \in \mathbf {Post}_{u_{c}}(q)\) that also satisfies Eqs. 94 and 95.

Proof

First note from Eqs. 82 and 83 that, if either vehicle is uncontrolled, then \(\frac {\overline {v}_{j}^{c}}{\underline {v}_{i}^{c}} \leq 1\) and \(\frac {\underline {v}_{j}^{c}}{\overline {v}_{i}^{c}} \geq 1\), violating \(\frac {\overline {v}_{j}^{c}}{\underline {v}_{i}^{c}} > \frac {\underline {v}_{j}^{c}}{\overline {v}_{i}^{c}}\). It follows that both vehicles are controlled, and that \(\overline {v}_{i}^{c} = \overline {v}_{j}^{c} > \underline {v}_{i}^{c} = \underline {v}_{j}^{c}\). We prove the following claim:

Claim: For any u c U c , there exists some d i ∈ [d m i n , d m a x ] such that \(u_{c,i}/\tau + d_{i} \in [\underline {v}_{i}^{c}, \overline {v}_{i}^{c}]\) and u c, i /τ + d i is an integer multiple of μ.

It suffices to prove that, for any u c U c , \([\underline {v}_{i}^{c} - u_{c,i}/\tau , \overline {v}_{i}^{c} - u_{c,i}/\tau ] \cap [d_{min}, d_{max}]\) contains some integral multiple of μ, since we may then take such a value as d i . Clearly, u c, i /τ ∈ [v m i n , v m a x ], from which it follows that \(\underline {v}_{i}^{c} - u_{c,i}/\tau = v_{min} + d_{max} - u_{c,i}/\tau \le d_{max}\) and that \(\overline {v}_{i}^{c} - u_{c,i}/\tau = v_{max} + d_{min} - u_{c,i}/\tau \ge d_{min}\). Thus, \([\underline {v}_{i}^{c} - u_{c,i}/\tau , \overline {v}_{i}^{c} - u_{c,i}/\tau ] \cap [d_{min}, d_{max}]\) is non-empty. Since it is non-empty, there must be at least one of d m i n and \(\underline {v}_{i}^{c} - u_{c,i}/\tau \) in the intersection of the two sets. Since both d m i n and \(\underline {v}_{i}^{c} - u_{c,i}/\tau \) are multiples of μ, the claim is proven. Constructing d i and d j as in the claim, we obtain

$$\frac{\overline{v}_{j}^{c}}{\underline{v}_{i}^{c}} \geq \frac{u_{c,j}/\tau + d_{j}}{u_{c,i}/\tau + d_{i}} \geq \frac{\underline{v}_{j}^{c}}{\overline{v}_{i}^{c}}.$$

It follows that we can take wW such that w i = d i τ and w j = d j τ, obtaining q with \(q_{i}^{\prime } = q_{i} + u_{c,i} + w_{i}\), \(q_{j}^{\prime } = q_{j} + u_{c,j} + w_{j}\) such that \(q^{\prime } \in \mathbf {Post}_{u_{c}}(q)\) satisfies Eqs. 94 and 95. □

Corollary 1

If d min and d max are integer multiples of μ then, given two vehicles i and j on different roads, there does not exist any safe and non-deadlocking supervisor \(\sigma : \tilde {Q} \rightarrow 2^{U_{c}}\) with σ(q) ≠ ∅, for any \(q \in \tilde {Q}\) satisfying Eqs. 92 95 only (i.e., without satisfying Eqs. 96 and 97 ), even when \(\frac {\overline {v}_{j}^{c}}{\underline {v}_{i}^{c}} > \frac {\underline {v}_{j}^{c}}{\overline {v}_{i}^{c}}\).

Proof

We have already shown that the result holds if \(\frac {\overline {v}_{j}^{c}}{\underline {v}_{i}^{c}} \leq \frac {\underline {v}_{j}^{c}}{\overline {v}_{i}^{c}}\), or \(\frac {\overline {v}_{j}^{c}}{\underline {v}_{i}^{c}} > \frac {\underline {v}_{j}^{c}}{\overline {v}_{i}^{c}}\) and q satisfies Eqs. 9297. It remains to be shown that the result also holds if d m i n and d m a x are integer multiples of μ, \(\frac {\overline {v}_{j}^{c}}{\underline {v}_{i}^{c}} > \frac {\underline {v}_{j}^{c}}{\overline {v}_{i}^{c}}\), and q satisfies Eqs. 9295, but not Eqs. 96 and 97. Consider any u c U c . By Lemma 3, there exists \(q^{\prime } \in \mathbf {Post}_{u_{c}}(q)\) that also satisfies Eqs. 94 and 95. There are now three cases to consider:Case 1: q satisfies Eqs. 9297.

We have shown in this case there exists no safe and non-deadlocking supervisor from q .

Case 2: q satisfies Eqs. 9295, but not both of Eqs. 96 and 97.

Because d m i n + v m i n > 0, Lemma 3 can be applied repeatedly, until a q is obtained which satisfies Eqs. 96 and 97.

Case 3: q does not satisfy both of Eqs. 92 and 93.

In this case, the line segment from q to q either crosses the bad set, or comes within a distance of μ τ/2 of it (see Fig. 9). In the latter case, we can find some pair x −1(q) and x −1(q ) such that the line segment from x to x crosses the bad set. □

Figure 9 depicts the set described by Eqs. 8487 of Prop. 8, the inflated set of Eqs. 9297, and the special case of Cor. 1. The simulations of Section 9 satisfied the property that d min and d max were integer multiples of μ, and hence the code used Eqs. 9295 only.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallal, E., Colombo, A., Del Vecchio, D. et al. Supervisory control for collision avoidance in vehicular networks using discrete event abstractions. Discrete Event Dyn Syst 27, 1–44 (2017). https://doi.org/10.1007/s10626-016-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-016-0228-3

Keywords

Navigation