Skip to main content
Log in

Monotonicity Properties for Multi-Class Queueing Systems

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

We study multi-dimensional stochastic processes that arise in queueing models used in the performance evaluation of wired and wireless networks. The evolution of the stochastic process is determined by the scheduling policy used in the associated queueing network. For general arrival and service processes, we give sufficient conditions in order to compare sample-path wise the workload and the number of users under different policies. This allows us to evaluate the performance of the system under various policies in terms of stability, the mean overall delay and the mean holding cost. We apply the general framework to linear networks, where users of one class require service from several shared resources simultaneously. For the important family of weighted α-fair policies, stability results are derived and monotonicity of the mean holding cost with respect to the fairness parameter α and the relative weights is established. In order to broaden the comparison results, we investigate a heavy-traffic regime and perform numerical experiments. In addition, we study a single-server queue with two user classes, and show that under Discriminatory Processor Sharing (DPS) or Generalized Processor Sharing (GPS) the mean overall sojourn time is monotone with respect to the ratio of the weights. Finally we extend the framework to obtain comparison results that cover the single-server queue with an arbitrary number of classes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altman E, Avrachenkov KE, Ayesta U (2006) A survey on discriminatory processor sharing. Queueing Syst 53:53–63

    Article  MathSciNet  Google Scholar 

  • Avrachenkov KE, Ayesta U, Brown P, Núñez-Queija R (2005) Discriminatory processor sharing revisited. In: Proceedings of IEEE INFOCOM, Miami

  • Bonald T, Borst SC, Proutière A (2006) Inter-cell coordination in wireless data networks. Eur Trans Telecommun 17:303–312

    Article  Google Scholar 

  • Bonald T, Massoulié L (2001) Impact of fairness on internet performance. In: Proceedings of ACM SIGMETRICS/Performance, Boston, pp 82–91

  • Bonald T, Proutière A (2004) On stochastic bounds for monotonic processor sharing networks. Queueing Syst 47:81–106

    Article  MathSciNet  Google Scholar 

  • Borst SC, Jonckheere M, Leskelä L (2008) Stability of parallel queueing systems with coupled service rates. Discret Event Dyn Syst 18:447–472

    Article  Google Scholar 

  • Borst SC, Mandjes M, van Uitert MJG (2003) Generalized processor sharing queues with heterogeneous traffic classes. Adv Appl Probab 35:806–845

    Article  Google Scholar 

  • Cheung SK, van den Berg JL, Boucherie RJ (2006) Insensitive bounds for the moments of the sojourn time distribution in the M/G/1 processor-sharing queue. Queueing Syst 53:7–18

    Article  MathSciNet  Google Scholar 

  • Dai JG (1995) On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Ann Appl Probab 5:49–77

    Article  MathSciNet  Google Scholar 

  • Demers A, Keshav S, Shenker S (1989) Analysis and simulation of a fair queueing algorithm. In: Proceedings of ACM SIGCOMM, pp 1–12

  • El-Taha M, Stidham S (1999) Sample-path analysis of queueing systems. Kluwer, Dordrecht

    Google Scholar 

  • Fayolle G, Mitrani I, Iasnogorodski R (1980) Sharing a processor among many job classes. J ACM 27:519–532

    Article  MathSciNet  Google Scholar 

  • Kang WN, Kelly FP, Lee NH, Williams RJ (2004) Fluid and Brownian approximations for an internet congestion control model. In: Proceedings of IEEE CDC, pp 3938–3943

  • Kang WN, Kelly FP, Lee NH, Williams RJ (2009) State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy. Ann Appl Probab (in press)

  • Kelly FP (1979) Stochastic networks and reversibility. Wiley, Chichester

    Google Scholar 

  • Kelly FP (2003) Fairness and stability of end-to-end congestion control. Eur J Control 9:159–176

    Article  Google Scholar 

  • Kelly FP, Williams RJ (2004) Fluid model for a network operating under a fair bandwidth-sharing policy. Ann Appl Probab 14:1055–1083

    Article  MathSciNet  Google Scholar 

  • van Kessel G, Núñez-Queija R, Borst SC (2005) Differentiated bandwidth sharing with disparate flow sizes. In: Proceedings of IEEE INFOCOM, Miami

  • Kim B, Kim J (2006) Comparison of DPS and PS systems according to DPS weights. IEEE Commun Lett 10(7):558–560

    Article  Google Scholar 

  • Kleinrock L (1967) Time-shared systems: a theoretical treatment. J ACM 14:242–261

    Article  MathSciNet  Google Scholar 

  • Lieshout P, Borst SC, Mandjes M (2006) Heavy-traffic approximations for linear networks operating under alpha-fair bandwidth-sharing policies. In: Proceedings of ValueTools, Pisa

  • Liu J, Proutière A, Yi Y, Chiang M, Poor VH (2007) Flow-level stability of data networks with non-convex and time-varying rate regions. In: Proceedings of ACM SIGMETRICS, San Diego, pp 239–250

  • Liu Z, Nain P, Towsley D (1995) Sample path methods in the control of queues. Queueing Syst 21:293–335

    Article  MathSciNet  Google Scholar 

  • López FJ, Sanz G (2002) Markovian couplings staying in arbitrary subsets of the state space. J Appl Probab 39:197–212

    Article  MathSciNet  Google Scholar 

  • Massey WA (1987) Stochastic orderings for Markov processes on partially ordered spaces. Math Oper Res 12:350–367

    Article  MathSciNet  Google Scholar 

  • Massoulié L, Roberts JW (2000) Bandwidth sharing and admission control for elastic traffic. Telecommun Syst 15:185–201

    Article  Google Scholar 

  • Massoulié L, Roberts JW (2002) Bandwidth sharing: objectives and algorithms. IEEE/ACM Trans Netw 10:320–328

    Article  Google Scholar 

  • Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans Netw 8:556–567

    Article  Google Scholar 

  • Muller AM, Stoyan D (2002) Comparison methods for stochastic models and risks. Wiley, New York

    Google Scholar 

  • Nain P, Towsley D (1994) Optimal scheduling in a machine with stochastic varying processing rate. IEEE Trans Automat Contr 39:1853–1855

    Article  MathSciNet  Google Scholar 

  • Parekh AK, Gallager RG (1993) A generalized processor sharing approach to flow control in integrated services networks: the single-node case. IEEE/ACM Trans Netw 1:344–357

    Article  Google Scholar 

  • Righter R, Shanthikumar JG (1989) Scheduling multiclass single server queueing systems to stochastically maximize the number of successful departures. Probab Eng Inf Sci 3:323–333

    Article  Google Scholar 

  • Schrage LE, Miller LW (1966) The queue M/G/1 with the shortest remaining processing time discipline. Oper Res 14:670–684

    Article  MathSciNet  Google Scholar 

  • Shaked M, Shanthikumar JG (1993) Stochastic orders and their applications. Academic, London

    Google Scholar 

  • Smith DR (1978) A new proof of the optimality of the shortest remaining processing time discipline. Oper Res 26:197–199

    Article  Google Scholar 

  • Verloop IM (2005) Efficient flow scheduling in resource-sharing networks. Master Thesis, Utrecht University. www.cwi.nl/~maaike/articles/thesisVerloop.pdf

  • Verloop IM, Ayesta U, Borst SC (2008) Comparison of bandwidth-sharing policies in a linear network. In: Proceedings of ValueTools, Athens

  • Verloop IM, Núñez-Queija R (2009) Assessing the efficiency of resource allocations in bandwidth-sharing networks. Perform Eval 66:59–77

    Article  Google Scholar 

  • Viswanathan H, Kumaran K (2005) Rate scheduling in multiple antenna downlink wireless systems. IEEE Trans Commun 53:645–655

    Article  Google Scholar 

  • Wierman A, Harchol-Balter M, Osogami T (2005) Nearly insensitive bounds on SMART scheduling. In: Proceedings of ACM SIGMETRICS

Download references

Acknowledgements

The authors are grateful to Matthieu Jonckheere (Eindhoven University of Technology, The Netherlands) for helpful discussions on stochastic comparisons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Maria Verloop.

Additional information

A shorter version with preliminary results appeared in the proceedings of ValueTools (Verloop et al. 2008).

Appendices

Appendix A: Proof of Lemma 5.1

For a given state \(\vec{n}\), the α-fair allocation is the vector (s 0,s 1,..., s L ) that solves the optimization problem (7). If n i  > 0, then s i  = C i  − s 0. The objective function in Eq. 7 expressed in terms of the value s 0, is concave in s 0. Taking the derivative of Eq. 7 with respect to s 0 and setting it equal to zero, we obtain that \(s_0^{\pi(\alpha,w)}(\vec{n})\) satisfies

$$ w_0\cdot n_0^\alpha \cdot (s_0^{\pi(\alpha, w)}(\vec{n}))^{-\alpha} = \sum\limits_{i=1}^L w_i\cdot n_i^\alpha \cdot (C_i-s_0^{\pi(\alpha, w)}(\vec{n}))^{-\alpha}, $$

or equivalently

$$ 1=\sum\limits_{i=1}^L\frac{w_i}{w_0} \Bigl(\frac{n_i}{n_0} \frac{s_0^{\pi(\alpha, w)}(\vec{n})}{C_i-s_0^{\pi(\alpha, w)}(\vec{n})}\Bigr)^\alpha. $$
(28)

The function \(\sum_{i=1}^L \frac{w_i}{w_0} \Bigl(\frac{n_i}{n_0}\frac{s_0}{C_i-s_0}\Bigr)^\alpha\) is non-decreasing in s 0. Hence, when either n i or \(\frac{w_i}{w_0}\) increases, by equality (28) the corresponding value of s 0 must decrease. Statements (i) and (iii) follow now immediately.

Statement (ii) follows similarly by noting that

$$\begin{array}{lll} \Bigl(\sum\limits_{i=1}^L \frac{w_i}{w_0} \Bigl(\frac{n_i}{n_0}\frac{s_0^{\pi(\gamma,w)}(\vec{n})}{C_i-s^{\pi(\gamma,w)}_0(\vec{n})}\Bigr)^\gamma \Bigl)^{\frac{1}{\gamma}} = 1&=& \Bigl(\sum\limits_{i=1}^L \frac{w_i}{w_0} \Bigl(\frac{n_i}{n_0}\frac{s_0^{\pi(\beta,w)}(\vec{n})}{C_i-s^{\pi(\beta,w)}_0(\vec{n})}\Bigr)^\beta \Bigl)^{\frac{1}{\beta}} \\[4pt] &=&\Bigr(\sum\limits_{i=1}^L\frac{w_i}{w_0} \Bigl(\frac{n_i}{n_0}\frac{s_0^{\pi(\beta,w)}(\vec{n})}{C_i-s^{\pi(\beta,w)}_0(\vec{n})}\Bigr)^\beta \Bigl)^{\frac{r}{r\beta}}\\ & \geq& \Bigr(\sum\limits_{i=1}^L\frac{w_i}{w_0} \Bigl(\frac{n_i}{n_0}\frac{s_0^{\pi(\beta,w)}(\vec{n})}{C_i-s^{\pi(\beta,w)}_0(\vec{n})}\Bigr)^{r\beta} \Bigl)^{\frac{1}{r\beta}} \\&=& \Bigr(\sum\limits_{i=1}^L\frac{w_i}{w_0} \Bigl(\frac{n_i}{n_0}\frac{s_0^{\pi(\beta,w)}(\vec{n})}{C_i-s_0^{\pi(\beta,w)}(\vec{n})}\Bigr)^\gamma \Bigl)^{\frac{1}{\gamma}}, \end{array}$$

with  = γ and r > 1. Hence \(s^{\pi(\beta,w)}_0(\vec{n})\leq s^{\pi(\gamma,w)}_0(\vec{n})\).□

Appendix B: Proof of Proposition 5.6

By the conjecture of Kang et al. (2009), the scaled workload in a node is independent of α. In addition, it is stated that the diffusion scaled number of users, \(\vec{\hat N}^{k,\pi(\alpha)}(t)\), converges in distribution as k→ ∞ to \(\vec{\hat N}^{\pi(\alpha)}(t)=\Delta(\vec{\hat{V}}^{\pi(\alpha)}(t))\), where the lifting mapping \(\Delta: \mathbf{R}_+^2 \to \mathbf{R}_+^3\) is as defined in Kang et al. (2009) and Kelly and Williams (2004). This is equivalent to saying that there are q 1(α), q 2(α) ≥ 0 such that

$$ \label{eq:dif_n} \hat N_i^{\pi(\alpha)} = \rho_iq_i(\alpha)^{\frac{1}{\alpha}}, \ \ i=1,2 \ \ \mbox{ and } \ \ \hat N_0^{\pi(\alpha)}=\rho_0(q_1(\alpha)+q_2(\alpha))^{\frac{1}{\alpha}}. $$
(29)

Using this representation for the number of users, we can describe the effect the parameter α has on the holding cost.

We compare the holding cost under two α-fair policies with parameters α 1 and α 2 for a given workload in both nodes. So we have at each time that the workload in a node is \(\hat V_i^{\pi(\alpha)}=\hat v_i,\) independent of α, i = 1,2 (from now on we will drop the dependence on t). Using the representation as in Eq. 9 and the fact that ρ 0 + ρ i  = C i , this gives

$$ (C_i-\rho_0)q_i(\alpha)^{1/\alpha}+\rho_0\frac{\mu_i}{\mu_0}(q_1(\alpha)+q_2(\alpha))^{1/\alpha} =\hat v_i. $$
(30)

Together with Eq. 29, the holding cost for an α-fair policy can be written as

$$\begin{array}{lll} \sum\limits_{i=0}^2 c_i \hat N_i^{\pi(\alpha)} &=& c_0\rho_0(q_1(\alpha)+q_2(\alpha))^{\frac{1}{\alpha}} +c_1(C_1-\rho_0) q_1(\alpha)^{\frac{1}{\alpha}} +c_2(C_2-\rho_0)q_2(\alpha)^{\frac{1}{\alpha}} \\ &=& c_1 \Bigl( (C_1-\rho_0)q_1(\alpha)^{1/\alpha}+\rho_0\frac{\mu_1}{\mu_0}(q_1(\alpha)+q_2(\alpha))^{1/\alpha}\Bigr) \\ && +\,c_2\Bigl((C_2-\rho_0)q_2(\alpha)^{1/\alpha}+\rho_0\frac{\mu_2}{\mu_0}(q_1(\alpha)+q_2(\alpha))^{1/\alpha}\Bigr) \\ && +\, \frac{c_0\mu_0-c_1\mu_1-c_2\mu_2}{\mu_0}\rho_0(q_1(\alpha)+q_2(\alpha))^{\frac{1}{\alpha}} \\ &\stackrel{d}{=}& c_1 \hat v_1+ c_2\hat v_2 +\frac{c_0\mu_0-c_1\mu_1-c_2\mu_2}{\mu_0}\rho_0(1+f(\alpha)^\alpha)^{\frac{1}{\alpha}}q_2(\alpha)^{\frac{1}{\alpha}}, \end{array}$$
(31)

where \(f(\alpha):=\Bigl(\frac{q_1(\alpha)}{q_2(\alpha)}\Bigr)^\frac{1}{\alpha}\).

For i = 2, Eq. 30 gives

$$\begin{array}{lll} &&{\kern-6pt} q_2(\alpha_1)^{1/\alpha_1}\Bigl(C_2-\rho_0+\rho_0\frac{\mu_2}{\mu_0}(1+f(\alpha_1)^{\alpha_1})^{1/\alpha_1}\Bigr)\\ &&{\kern4pt} =q_2(\alpha_2)^{1/\alpha_2}\Bigl(C_2-\rho_0+\rho_0\frac{\mu_2}{\mu_0}(1+f(\alpha_2)^{\alpha_2})^{1/\alpha_2}\Bigr). \label{i2} \end{array}$$
(32)

From Eq. 32 we conclude that

$$ (1+f(\alpha_1)^{\alpha_1})^{\frac{1}{\alpha_1}}q_2(\alpha_1)^{\frac{1}{\alpha_1}} < \ (=) \ (1+f(\alpha_2)^{\alpha_2})^{\frac{1}{\alpha_2}}q_2(\alpha_2)^{\frac{1}{\alpha_2}} $$
(33)

if and only if

$$\frac{(1+f(\alpha_1)^{\alpha_1})^{\frac{1}{\alpha_1}}}{(C_2-\rho_0+\rho_0\frac{\mu_2}{\mu_0}(1+f(\alpha_1)^{\alpha_1})^{1/\alpha_1}} < \ (=) \ \frac{(1+f(\alpha_2)^{\alpha_2})^{\frac{1}{\alpha_2}}}{(C_2-\rho_0+\rho_0\frac{\mu_2}{\mu_0}(1+f(\alpha_2)^{\alpha_2})^{1/\alpha_2}}, $$

if and only if

$$ (1+f(\alpha_1)^{\alpha_1})^{\frac{1}{\alpha_1}}< \ (=) \ (1+f(\alpha_2)^{\alpha_2})^{\frac{1}{\alpha_2}}. $$
(34)

Let b be such that \(\hat v_1=b\hat v_2\). Assume without loss of generality \(\frac{\rho_0/\mu_0}{(C_2-\rho_0)/\mu_2+\rho_0/\mu_0} \leq b\leq 1\). (For states with b > 1 the analysis is the same, with only the roles of nodes 1 and 2 interchanged.) Note that when \(b=\frac{\rho_0/\mu_0}{(C_2-\rho_0)/\mu_2+\rho_0/\mu_0}\) we are on the edge of the cone as described in Eq. 10. In Lemma 1 (see below) we prove that \((1+f(\alpha)^{\alpha})^{\frac{1}{\alpha}}\) is indeed strictly decreasing in α when \(\frac{\rho_0/\mu_0}{(C_2-\rho_0)/\mu_2+\rho_0/\mu_0}< b \leq 1\) and is constant when \(b=\frac{\rho_0/\mu_0}{(C_2-\rho_0)/\mu_2+\rho_0/\mu_0}\), the edge of the cone. Assuming the probability mass is not all concentrated on the edge of the cone, we conclude from Eq. 31 and the equivalence between Eqs. 33 and 34, that the mean holding cost is strictly decreasing (strictly increasing) in α when c 1 μ 1 + c 2 μ 2 < c 0 μ 0 (c 1 μ 1 + c 2 μ 2 > c 0 μ 0). □

The following lemma is used in the proof of Proposition 5.6.

Lemma 1

The function (1 + f(α)α)1/α with \(f(\alpha)=\Bigl(\frac{q_1(\alpha)}{q_2(\alpha)}\Bigr)^{\frac{1}{\alpha}}\), is strictly decreasing in α when \(\frac{\rho_0/\mu_0}{(C_2-\rho_0)/\mu_2+\rho_0/\mu_0} < b\leq 1\) and is constant when \(b=\frac{\rho_0/\mu_0}{(C_2-\rho_0)/\mu_2+\rho_0/\mu_0}.\) Here b satisfies \(\hat v_1=b\hat v_2\).

Proof

From \(\hat v_1=b\hat v_2\) and Eq. 30 we obtain the relation

$$ (C_1-\rho_0)q_1(\alpha_i)^{\frac{1}{\alpha_i}}+(1-b)\rho_0\frac{\mu_1}{\mu_0}(q_1(\alpha_i)+q_2(\alpha_i))^{\frac{1}{\alpha_i}}=b(C_2-\rho_0)\frac{\mu_1}{\mu_2}q_2(\alpha_i)^{\frac{1}{\alpha_i}}, $$

hence when we divide both sides by \(q_2(\alpha_i)^{\frac{1}{\alpha_i}}\), we obtain

$$ (C_1-\rho_0)f(\alpha_i)+(1-b)\rho_0\frac{\mu_1}{\mu_0}(1+f(\alpha_i)^{\alpha_i})^{\frac{1}{\alpha_i}}=b(C_2-\rho_0)\frac{\mu_1}{\mu_2}. $$
(35)

By Eq. 35 we have that f(α) = 0 if and only if \(b=\frac{\rho_0/\mu_0}{(C_2-\rho_0)/\mu_2+\rho_0/\mu_0}\).

Assume \(b=\frac{\rho_0/\mu_0}{(C_2-\rho_0)/\mu_2+\rho_0/\mu_0}\). Then f(α) = 0 and hence the function \((1+f(\alpha)^{\alpha})^{\frac{1}{\alpha}}\) is constant.

Now assume \(\frac{\rho_0/\mu_0}{(C_2-\rho_0)/\mu_2+\rho_0/\mu_0} < b\leq 1\). So f(α) > 0 for all α. Take α 1 < α 2 and let r > 1 be such that α 2 =  1. Then

$$(1+f(\alpha_2)^{\alpha_2})^{\frac{1}{\alpha_2}} = (1^{r\alpha_1}+f(r\alpha_1)^{r\alpha_1})^{\frac{1}{r\alpha_1}} <(1^{\alpha_1}+f(r\alpha_1)^{\alpha_1})^{\frac{r}{r\alpha_1}} =(1+f(r\alpha_1)^{\alpha_1})^{\frac{1}{\alpha_1}}, $$
(36)

since 1 + f( 1) > 1. Suppose f(α 2) = f( 1) ≤ f(α 1). From Eq. 36, we then obtain \((1+f(\alpha_2)^{\alpha_2})^{\frac{1}{\alpha_2}}< (1+f(\alpha_1)^{\alpha_1})^{\frac{1}{\alpha_1}}\). However, from Eq. 35 we know that when f(α 2) ≤ f(α 1), then \((1+f(\alpha_2)^{\alpha_2})^{\frac{1}{\alpha_2}}\geq (1+f(\alpha_1)^{\alpha_1})^{\frac{1}{\alpha_1}}\), hence we have a contradiction. So we conclude that f(α 2) > f(α 1), and hence f(α) is strictly increasing in α and from Eq. 35 it then follows that \((1+f(\alpha)^\alpha)^\frac{1}{\alpha}\) is strictly decreasing in α.□

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verloop, I.M., Ayesta, U. & Borst, S. Monotonicity Properties for Multi-Class Queueing Systems. Discrete Event Dyn Syst 20, 473–509 (2010). https://doi.org/10.1007/s10626-009-0069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-009-0069-4

Keywords

Navigation