Skip to main content
Log in

Decreasing norm-trace codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The decreasing norm-trace codes are evaluation codes defined by a set of monomials closed under divisibility and the rational points of the extended norm-trace curve. In particular, the decreasing norm-trace codes contain the one-point algebraic geometry (AG) codes over the extended norm-trace curve. We use Gröbner basis theory and find the indicator functions on the rational points of the curve to determine the basic parameters of the decreasing norm-trace codes: length, dimension, and minimum distance. We also obtain their dual codes. We give conditions for a decreasing norm-trace code to be a self-orthogonal or a self-dual code. We provide a linear exact repair scheme to correct single erasures for decreasing norm-trace codes, which applies to higher rate codes than the scheme developed by Jin et al. (IEEE Trans Inf Theory 64(2):900–908, 2018) when applied to the one-point AG codes over the extended norm-trace curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Arikan E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009).

    Article  MathSciNet  Google Scholar 

  2. Assmus E., Key J.: Affine and projective planes. Discret. Math. 83(2), 161–187 (1990).

    Article  MathSciNet  Google Scholar 

  3. Ball T., Camps E., Chimal-Dzul H., Jaramillo-Velez D., López H.H., Nichols N., Perkins M., Soprunov I., Vera-Martínez G., Whieldon G.: Coding theory package for Macaulay2. J. Softw. Algebra Geom. 11, 113–122 (2021).

    Article  MathSciNet  Google Scholar 

  4. Bardet M., Dragoi V., Otmani A., Tillich J.-P.: Algebraic properties of polar codes from a new polynomial formalism. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 230–234 (2016).

  5. Becker T., Weispfenning V.: Gröbner Bases—A Computational Approach to Commutative Algebra, vol. 2. Springer, Berlin (1998).

    Google Scholar 

  6. Bosma W., Cannon J., Playoust C.: The magma algebra system I: the user language. J. Symb. Comput. 24(3), 235–265 (1997).

    Article  MathSciNet  Google Scholar 

  7. Bras-Amorós M., O’Sullivan M.E.: Extended norm-trace codes with optimized correction capability. In: Boztaş S., Lu H.-F.F. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 337–346. Springer, Berlin (2007).

    Chapter  Google Scholar 

  8. Bras-Amorós M., O’Sullivan M.E.: Duality for some families of correction capability optimized evaluation codes. Adv. Math. Commun. 2(1), 15–33 (2008).

    Article  MathSciNet  Google Scholar 

  9. Buchberger B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Dissertation an dem Math. Inst. der Universität von Innsbruck (1965).

  10. Camps E., López H.H., Matthews G.L., Sarmiento E.: Polar decreasing monomial-cartesian codes. IEEE Trans. Inf. Theory 67(6), 3664–3674 (2021).

    Article  MathSciNet  Google Scholar 

  11. Carvalho C.: Gröbner bases methods on coding theory. In: Algebra for Secure and Reliable Communication Modeling, vol. 642, pp. 73–86. Contemporary Mathematics (2015).

  12. Cox J.L.D., O’Shea D.: Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer, Berlin (2008).

    Google Scholar 

  13. Eisenbud D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1995).

    Google Scholar 

  14. Fitzgerald J., Lax R.F.: Decoding affine variety codes using gröbner bases. Des. Codes Cryptogr. 13(2), 147–158 (1998).

    Article  MathSciNet  Google Scholar 

  15. Geil O.: On codes from norm-trace curves. Finite Fields Appl. 9(3), 351–371 (2003).

    Article  MathSciNet  Google Scholar 

  16. Geil O., Høholdt T.: Footprints or generalized Bezout’s theorem. IEEE Trans. Inf. Theory 46(2), 635–641 (2000).

    Article  MathSciNet  Google Scholar 

  17. Ghorpade S.R.: A note on Nullstellensatz over finite fields. Contemp. Math. 738, 23–32 (2019).

    Article  MathSciNet  Google Scholar 

  18. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de.

  19. Grayson D.R., Stillman M.E.: Macaulay2, a software system for research in algebraic geometry.

  20. Guenda S.J.K., Gulliver T.A.: Constructions of good entanglement assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018).

    Article  MathSciNet  Google Scholar 

  21. Harris J.: Algebraic Geometry. A First Course. Graduate Texts in Mathematics. Springer, New York (1992).

    Google Scholar 

  22. Høholdt T., van Lint J., Pellikaan R.: Algebraic Geometry Codes, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).

    Google Scholar 

  23. Janwa H., Piñero F.L.: On parameters of subfield subcodes of extended norm-trace codes. Adv. Math. Commun. 11(2), 379–388 (2017).

    Article  MathSciNet  Google Scholar 

  24. Jin L., Luo Y., Xing C.: Repairing algebraic geometry codes. IEEE Trans. Inf. Theory 64(2), 900–908 (2018).

    Article  MathSciNet  Google Scholar 

  25. Kim B.: Quantum codes from one-point codes on norm-trace curves. Cryptogr. Commun. 14(5), 1179–1188 (2022).

    Article  MathSciNet  Google Scholar 

  26. Lidl R., Niederreiter H.: Introduction to Finite Fields and their Applications, 2 edition Cambridge University Press, Cambridge (1994).

    Book  Google Scholar 

  27. López H.H., Soprunov I., Villarreal R.H.: The dual of an evaluation code. arXiv:2012.10016v2 (2023).

  28. López H.H., Matthews G.L., Valvo D.: Erasures repair for decreasing monomial-cartesian and augmented reed-muller codes of high rate. IEEE Trans. Inf. Theory 68, 1651–1662 (2021).

    Article  MathSciNet  Google Scholar 

  29. López H.H., Soprunov I., Villarreal R.H.: The dual of an evaluation code. Des. Codes Cryptogr. 89(7), 1367–1403 (2021).

    Article  MathSciNet  Google Scholar 

  30. Matthews G.L., Murphy A.W.: Norm-trace-lifted codes over binary fields. In: 2022 IEEE International Symposium on Information Theory (ISIT), pp. 3079–3084 (2022).

  31. Miura S.: Algebraic geometric codes on certain plane curves. Electron. Commun. Jpn. Part 3 76(12), 1–13 (2003).

    Google Scholar 

  32. Moreno E.C., Martínez-Moro E., Rosales E.S.: Vardøhus codes: polar codes based on castle curves kernels. IEEE Trans. Inf. Theory 66(2), 1007–1022 (2020).

    Article  Google Scholar 

  33. Munuera C., Tizziotti G.C., Torres F.: Two-point codes on norm-trace curves. In: Barbero Á. (ed.) Coding Theory and Applications, pp. 128–136. Springer, Berlin (2008).

    Chapter  Google Scholar 

  34. Srinivasan S., Tripathi U., Venkitesh S.: Decoding variants of Reed-Muller codes over finite grids. ACM Trans. Comput. Theory 12(4), 1–11 (2020).

    MathSciNet  Google Scholar 

  35. Villarreal R.H.: Monomial Algebras. Monographs and Research Notes in Mathematics (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cícero Carvalho.

Additional information

Communicated by L. Storme.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cícero Carvalho was partially supported by FAPEMIG APQ-00864-21. Hiram H. López was partially supported by NSF DMS-2201094 and NSF DMS-2401558. Gretchen L. Matthews was partially supported by NSF DMS-2201075 and the Commonwealth Cyber Initiative.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, C., López, H.H. & Matthews, G.L. Decreasing norm-trace codes. Des. Codes Cryptogr. 92, 1143–1161 (2024). https://doi.org/10.1007/s10623-023-01334-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01334-1

Keywords

Mathematics Subject Classification

Navigation