Skip to main content
Log in

New classes of NMDS codes with dimension 3

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The singleton defect of an [nkd] linear code \(\mathcal{C}\) is defined as \(s(\mathcal{C})=n-k+1-d\). Codes with \(s({\mathcal {C}})=s({\mathcal {C}}^{\bot })=1\) are called near maximum distance separable (NMDS) codes. It is known that an \([n,3,n-3]\) NMDS code is equivalent to an (n, 3)-arc in PG(2, q). In this paper, by adding some suitable projective points into some known \((q+5,3)\)-arcs in PG(2, q), we obtain two families of \([q+7,3,q+4]\) NMDS codes for even prime power q and a family of \([q+6,3,q+3]\) NMDS codes for odd prime power q. In addition, when \(q=2^m\) and m is odd, by adding m suitable projective points into the maximum arcs in PG(2, q), we obtain a family of \([q+m+2,3,q+m-1]\) NMDS codes over \({\mathbb {F}}_q\), from which we further induce a family of NMDS codes with parameters \([q^t+m+2,3,q^t+m-1]\) over the extension field \({\mathbb {F}}_{q^t}\) for any odd integer t. All the resulting NMDS codes in this paper are shown to be linearly inequivalent to the NMDS codes constructed from elliptic curves, and their weight distributions are completely determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abatangelo V., Larato B.: Near-MDS codes arising from algebraic curves. Discret. Math. 301(1), 5–19 (2005).

    Article  MathSciNet  Google Scholar 

  2. Aguglia A., Giuzzi L., Sonnino A.: Near-MDS codes from elliptic curves. Des. Codes Cryptogr. 89, 965–972 (2021).

    Article  MathSciNet  Google Scholar 

  3. Ball S.: Multiple blocking sets and arcs in finite planes. J. Lond. Math. Soc. 54, 581–593 (1996).

    Article  MathSciNet  Google Scholar 

  4. Ball S.: On large subsets of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 14, 733–748 (2012).

    Article  Google Scholar 

  5. Ball S., De Beule J.: On sets of vectors of a finite vector space in which every subset of basis size is a basis II. Des. Codes Cryptogr. 65(1–2), 5–14 (2012).

    Article  MathSciNet  Google Scholar 

  6. Ball S.: Finite Geometry and Combinatorial Applications. Cambridge University Press, Cambridge (2015).

    Book  Google Scholar 

  7. Bartoli D., Marcugini S., Pambianco F.: The non-existence of some NMDS codes and the extremal sizes of complete \((n,3)\)-arcs in PG\((2,16)\). Des. Codes Cryptogr. 72, 129–134 (2014).

    Article  MathSciNet  Google Scholar 

  8. Bierbrauer J., Marcugini S., Pambianco F.: A family of highly symmetric codes. IEEE Trans. Inform. Theory 51(10), 3665–3668 (2005).

    Article  MathSciNet  Google Scholar 

  9. Carlitz L.: Explicit evaluation of certain exponential sums. Math. Scand. 44, 5–16 (1979).

    Article  MathSciNet  Google Scholar 

  10. Ding C., Tang C.: Infinite families of near MDS codes holding t-designs. IEEE Trans. Inform. Theory 99, 1–1 (2020).

    MathSciNet  Google Scholar 

  11. Dodunekov S., Landgev I.: On near-MDS codes. J. Geometry 54, 30–43 (1995).

    Article  MathSciNet  Google Scholar 

  12. Dodunekov S., Landgev I.: Near-MDS codes over some small fields. Discret. Math. 213, 55–65 (2000).

    Article  MathSciNet  Google Scholar 

  13. Faldum A., Willems W.: Codes of small defect. Des. Codes Cryptogr. 10, 341–350 (1997).

    Article  MathSciNet  Google Scholar 

  14. Gulliver T., Kim J., Lee Y.: New MDS or near-MDS self-dual codes. IEEE Trans. Inform. Theory 54(9), 4354–4360 (2008).

    Article  MathSciNet  Google Scholar 

  15. Han D., Fan C.: Roth-Lempel NMDS codes of non-elliptic-curve type. IEEE Trans. Inform. Theory 69(9), 5670–5675 (2023).

    Article  MathSciNet  Google Scholar 

  16. Hirschfeld J.: Projective Geometries Over Finite Fields. Oxford Mathematical Monographs. Oxford University Press, New York (1998).

    Book  Google Scholar 

  17. Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory. Springer, New York (1990).

    Book  Google Scholar 

  18. Johansen A., Helleseth T.: A family of \(m\)-sequences with five-valued cross correlation. IEEE Trans. Inform. Theory 55(2), 880–887 (2009).

    Article  MathSciNet  Google Scholar 

  19. Li X., Heng Z.: A construction of optimal locally recoverable codes. Cryptogr. Commun. 15, 553–563 (2023).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. MacWilliams F., Sloane N.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

    Google Scholar 

  21. Marcugini S., Milani A., Pambianco F.: Maximal \((n,3)\)-arcs in PG\((2,11)\). Discret. Math. 208–209(28), 421–426 (1999).

    Article  MathSciNet  Google Scholar 

  22. Marcugini S., Milani A., Pambianco F.: NMDS codes of maximal length over \({\mathbb{F} }_q\), \(8\le q\le 11\). IEEE Trans. Inform. Theory 48, 963–966 (2002).

    Article  MathSciNet  Google Scholar 

  23. Marcugini S., Milani A., Pambianco F.: Maximal \((n,3)\)-arcs in PG\((2,13)\). Discret. Math. 294(1–2), 139–145 (2005).

    Article  MathSciNet  Google Scholar 

  24. Moisio M.: On the moments of Kloosterman sums and fibre products of Kloosterman curves. Finite Fields Appl. 14(2), 515–531 (2008).

    Article  MathSciNet  Google Scholar 

  25. Maschietti A.: Difference set and hyperovals. Des. Codes Cryptogr. 14(1), 89–98 (1998).

    Article  MathSciNet  Google Scholar 

  26. Moreno C., Moreno O.: Exponential sums and Goppa codes: I. Proc. Am. Math. Soc. 111(2), 523–531 (1991).

    MathSciNet  Google Scholar 

  27. Simos D., Varbanov Z.: MDS Codes, NMDS codes and their secret-sharing schemes. In: the 18th International Conference on Applications of Computer Algebra (ACA’12), Sofia (2012).

  28. Singleton R.: Maximum distance separable \(q\)-nary codes. IEEE Trans. Inform. Theory 10, 116–118 (1964).

    Article  MathSciNet  Google Scholar 

  29. Shi M., Sok L., Solé P., Calkavur S.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018).

    Article  MathSciNet  Google Scholar 

  30. Tsfasman M., Vladut S.G.: Algebraic-Geometric Codes. Kluwer, Dordrecht (1991).

    Book  Google Scholar 

  31. Wang Q., Heng Z.: Near MDS codes from oval polynomials. Discret. Math. 344(4), 112277 (2021).

  32. Xu, L., Fan, C., Han, D.: Near-MDS codes from maximal arcs in PG\((2,q)\), arXiv: 2208.08578.

  33. Zhou Y., Wang F., Xin Y., Qing S., Yang Y.: A secret sharing scheme based on near-MDS codes. Proceeding of the IC-NIDC pp 833–836 (2009).

Download references

Acknowledgements

The authors would like to thank the Editor and anonymous reviewers for their valuable comments that improved the presentation and quality of this article. This work was supported in part by the National Natural Science Foundation of China under Grant 11971395, Grant 62331002, and Grant 12371524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by I. Landjev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Define \({\mathcal {V}}=\{ v \in {\mathbb {F}}_{2^m} {\setminus } \{1\}: \textrm{Tr}(v)=\textrm{Tr}(v^3)=\textrm{Tr}(v^{-3})=1 \}\) for odd m, and \({\mathcal {W}}=\{ w \in {\mathbb {F}}_{2^m}: w^3 \ne 1, \textrm{Tr}(w^3)=0, \textrm{Tr}(w)=\textrm{Tr}(w^{-1})=1 \}\) for even m. In the appendix, we want to prove that \(\mathcal{V}\ne \emptyset \) and \(\mathcal{W}\ne \emptyset \).

Note that \(\textrm{Tr}(0)=0\) and \(\textrm{Tr}(x)=0\) or 1 for any \(x \in {{\mathbb {F}}}_{2^m}^*\), thus we have

$$\begin{aligned} \#{\mathcal {V}}&= \frac{1}{8}\sum \limits _{\begin{array}{c} {x \in {\mathbb {F}}_{2^m}^{*}} \\ {x \ne 1} \end{array}}\left[ \Big (1-(-1)^{\textrm{Tr}(x)}\Big ) \Big (1-(-1)^{\textrm{Tr}(x^3)}\Big ) \Big (1-(-1)^{\textrm{Tr}(x^{-3})}\Big )\right] \nonumber \\&=\frac{1}{8} \sum \limits _{x \in {\mathbb {F}}_{2^m}^{*} }\left[ \Big (1-(-1)^{\textrm{Tr}(x)}\Big ) \Big (1-(-1)^{\textrm{Tr}(x^3)}\Big ) \Big (1-(-1)^{\textrm{Tr}(x^{-3})}\Big )\right] -1\nonumber \\&=\frac{1}{8}N_v-1, \end{aligned}$$
(19)

and

$$\begin{aligned} \#{\mathcal {W}}&= \frac{1}{8} \sum \limits _{\begin{array}{c} {x \in {\mathbb {F}}_{2^m}^{*}} \\ {x^3 \ne 1} \end{array}} \left[ \Big (1+(-1)^{\textrm{Tr}(x^3)}\Big ) \Big (1-(-1)^{\textrm{Tr}(x)}\Big ) \Big (1-(-1)^{\textrm{Tr}(x^{-1})}\Big )\right] \nonumber \\&\ge \frac{1}{8} \sum \limits _{x \in {\mathbb {F}}_{2^m}^{*} } \left[ \Big (1+(-1)^{\textrm{Tr}(x^3)}\Big ) \Big (1-(-1)^{\textrm{Tr}(x)}\Big ) \Big (1-(-1)^{\textrm{Tr}(x^{-1})}\Big )\right] -3\nonumber \\&=\frac{1}{8}N_w-3, \end{aligned}$$
(20)

where \(N_v\) and \(N_w\) denote the value of the sum form in (19) and (20) respectively.

In order to evaluate \(\#\mathcal{V}\) and \(\#\mathcal{W}\), we need the following exponential sums:

$$\begin{aligned} K_{m}&=\sum _{x \in {\mathbb {F}}_{2^{m}}^{*}}(-1)^{{\text {Tr}}_{m}( x+x^{-1})}, ~~~ A_{m} =\sum _{x \in {\mathbb {F}}_{2^{m}}}(-1)^{{\text {Tr}}_{m}( x^{3}+ x)}, \\ B_{m}&=\sum _{x \in {\mathbb {F}}_{2^{m}}^{*}}(-1)^{{\text {Tr}}_{m}( x^{3}+ x^{-1})},~~~ R_{m} =\sum _{x \in {\mathbb {F}}_{2^{m}}}(-1)^{{\text {Tr}}_{m}( x^{3})}, \\ S_{m}&=\sum _{x \in {\mathbb {F}}_{2^{m}}^{*}}(-1)^{{\text {Tr}}_{m}( x^{3}+ x + x^{-1})},~~~ T_{m} =\sum _{x \in {\mathbb {F}}_{2^{m}}^{*}}(-1)^{{\text {Tr}}_{m}( x^{3}+ x + x^{-3})}. \end{aligned}$$

Some useful results about \(K_m, A_m, B_m\) and \(R_m\) have been obtained in [9] and [18, Section IV].

Lemma 14

([9, 18])

  1. (1)

    \(|K_{m}| \le 2\sqrt{2^m}\), \(|A_{m}| \le 2\sqrt{2^m}\) and \(|B_{m}| \le 4\sqrt{2^m}\) for any m.

  2. (2)

    \(R_{m}= {\left\{ \begin{array}{ll} 0, &{} \text{ if } ~ m ~\text{ is } \text{ odd }; \\ (-1)^{\frac{m}{2}+1}2^{\frac{m}{2}+1}, &{} \text{ if } ~m ~\text{ is } \text{ even }. \end{array}\right. }\)

By the following important result about exponential sums, we can obtain the similar conclusions about \(S_m\) and \(T_m\).

Lemma 15

([26]) Let \({\overline{{\mathbb {F}}}}_{2^m}\) be the algebraic closure of \({\mathbb {F}}_{2^m}\), and \(r(x)=f(x)/g(x)\) be a rational function in \({\mathbb {F}}_{2^m}(x)\) that satisfies the condition

$$\begin{aligned}r(x)\ne h(x)^2+h(x),~~\mathrm{for~any}~h(x)\in {\overline{{\mathbb {F}}}}_{2^m}(x).\end{aligned}$$

Let s be the number of distinct roots of g(x) in \({\overline{{\mathbb {F}}}}_{2^m}\). If \(\chi (a)\) denotes a nontrivial character of \({\mathbb {F}}_{2^m}\), then we have

$$\begin{aligned} \left| \sum \limits _{x\in L}\chi (r(x))\right| \le \big (\max (\deg f,\deg g)+s^*-2\big )\sqrt{2^m}+\delta , \end{aligned}$$
(21)

where the sum \(\sum \) runs over all \(x\in {\mathbb {F}}_{2^m}\) excluding the zeros of g(x); \(s^*=s\) and \(\delta =1\) when \(\deg f\le \deg g\), and \(s^*=s+1\) and \(\delta =0\) otherwise.

Then we can immediately obtain the following results.

Lemma 16

\(|S_{m}| \le 4\sqrt{2^m}\) and \(|T_{m}| \le 6\sqrt{2^m}\) for any positive integer m.

Now we are ready to demonstrate the existence of v and w in the corresponding finite fields \({\mathbb {F}}_{2^m}\).

Lemma 17

\(\#\mathcal{V}>0\) for any odd integer \(m\ge 5\).

Proof

Since \(\gcd (\pm 3,2^m-1)=1\) for any odd m, then \(x^{\pm 3}\) are permutations over \({\mathbb {F}}_{2^m}^*\), thus by Lemma 4, we have

$$\begin{aligned}\sum \limits _{x \in {\mathbb {F}}_{2^m}^*}(-1)^{\textrm{Tr}(x)}=\sum \limits _{x \in {\mathbb {F}}_{2^m}^*}(-1)^{\textrm{Tr}(x^3)}=\sum \limits _{x \in {\mathbb {F}}_{2^m}^*}(-1)^{\textrm{Tr}(x^{-3})}=-1.\end{aligned}$$

By simple computation, we obtain

$$\begin{aligned} N_v&=\sum \limits _{x \in {\mathbb {F}}_{2^m}^{*} } \Big [\left( 1-(-1)^{\textrm{Tr}(x)}\right) \left( 1-(-1)^{\textrm{Tr}(x^3)}\right) \left( 1-(-1)^{\textrm{Tr}(x^{-3})}\right) \Big ]\\&=2^m-1 - (-1)\times 3 + \sum \limits _{x \in {\mathbb {F}}_{2^m}^{*} } (-1)^{\textrm{Tr}(x^3+x)} + \sum \limits _{x \in {\mathbb {F}}_{2^m}^{*} } (-1)^{\textrm{Tr}(x+x^{-3})} \\&\quad + \sum \limits _{x \in {\mathbb {F}}_{2^m}^{*} } (-1)^{\textrm{Tr}(x^3+x^{-3})} - \sum \limits _{x \in {\mathbb {F}}_{2^m}^{*} } (-1)^{\textrm{Tr}(x^3+x+x^{-3})}\\&=2^m+1+A_m+B_m+K_m-T_m. \end{aligned}$$

By (19), Lemmas 14 and 16, we have

$$\begin{aligned} \#\mathcal{V}&=\frac{1}{8}N_v-1\\&\ge \frac{1}{8}\big (2^m+1-14\sqrt{2^m}\big )-1\\&=\frac{1}{8}\big (2^m-14\sqrt{2^m}-7\big ). \end{aligned}$$

Clearly \(\#\mathcal{V}>0\) when \(m\ge 9\). When \(m=5\), let \(\xi \) be a generator of \({\mathbb {F}}_{2^5}^*\) satisfying \(\xi ^5+\xi ^2+1=0\). Then it is easy to verify \(\xi ^3\in \mathcal{V}\) by Magma. When \(m=7\), let \(\tau \) be a generator of \({\mathbb {F}}_{2^7}^*\) satisfying \(\tau ^7+\tau +1=0\). Then \(\tau ^7\in \mathcal{V}\) by Magma. \(\square \)

Lemma 18

\(\#\mathcal{W}>0\) for any even integer \(m\ge 6\).

Proof

Since \(\gcd (-1, 2^m-1)=1\), then by Lemma 4, we have

$$\begin{aligned}\sum \limits _{w \in {\mathbb {F}}_{2^m}}(-1)^{\textrm{Tr}(w)}=\sum \limits _{w \in {\mathbb {F}}_{2^m}}(-1)^{\textrm{Tr}(w^{-1})}=0.\end{aligned}$$

Similar to Lemma 17, by simple computation, we obtain

$$\begin{aligned} N_w&=\sum \limits _{x \in {\mathbb {F}}_{2^m}^{*} } \Big [\left( 1+(-1)^{\textrm{Tr}(x^3)}\right) \left( 1-(-1)^{\textrm{Tr}(x)}\right) \left( 1-(-1)^{\textrm{Tr}(x^{-1})}\right) \Big ]\\&=2^m-1-(-1)\times 2+\sum \limits _{x\in {\mathbb {F}}_{2^m}^{*} } \left( (-1)^{\textrm{Tr}(x^3)} - (-1)^{\textrm{Tr}(x^3+x)} - (-1)^{\textrm{Tr}(x^3+x^{-1})}\right. \\&\left. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+ (-1)^{\textrm{Tr}(x+x^{-1})} + (-1)^{\textrm{Tr}(x^3+x+x^{-1})}\right) \\&=2^m+1+R_m-A_m-B_m+K_m+S_m. \end{aligned}$$

By (20), Lemmas 14 and 16, we have

$$\begin{aligned} \#\mathcal{W}&\ge \frac{1}{8}N_w-3\\&\ge \frac{1}{8}\big (2^m+1-14\sqrt{2^m}\big )-3\\&=\frac{1}{8}\big (2^m-14\sqrt{2^m}-23\big ). \end{aligned}$$

Clearly \(\#\mathcal{W}>0\) when \(m\ge 8\). When \(m=6\), let \(\zeta \) be a generator of \({\mathbb {F}}_{2^6}^*\) satisfying \(\zeta ^6+\zeta ^5+1=0\). Then it is easy to verify that \(\zeta ^5\in \mathcal{W}\) by Magma. \(\square \)

Appendix B

Let \(q=2^m\) with an odd positive integer m. In the appendix, we want to show the existence of \(\lambda \in {\mathbb {F}}_q^*\) that satisfies the following two conditions:

  1. (1)

    \(\lambda , \lambda ^2, \cdots , \lambda ^{2^{m-1}}\) are different from each other;

  2. (2)

    for each \(s \in \left[ \frac{m-1}{2}\right] ,\)

    $$\begin{aligned} \textrm{Tr}\left( \frac{\lambda ^{2^s+7}+\lambda ^{7\cdot 2^s+1}+\lambda ^{6\cdot 2^s+2}+\lambda ^{2^{s+1}+6}}{\lambda ^{12}+\lambda ^{6\cdot 2^{s+1}}}\right) =1. \end{aligned}$$

The following table is obtained by Magma, showing the total number of \(\lambda \)’s satisfying the above two conditions over \({\mathbb {F}}_q\). It is seen that the number of \(\lambda \) increases with the increase of m (Table 2). Therefore we can conjecture that such \(\lambda \) always exists when \(m\ge 3\).

Table 2 The total number of \(\lambda \)’s over \({\mathbb {F}}_{2^m}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Wang, A. & Xu, L. New classes of NMDS codes with dimension 3. Des. Codes Cryptogr. 92, 397–418 (2024). https://doi.org/10.1007/s10623-023-01313-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01313-6

Keywords

Mathematics Subject Classification

Navigation