Skip to main content
Log in

Determination of the sizes of optimal geometric orthogonal codes with parameters \((n\times m,k,\lambda ,k-1)\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The study of \((n\times m,k,\lambda _a,\lambda _c)\)-geometric orthogonal codes (\((n\times m,k,\lambda _a,\lambda _c)\)-GOCs) is motivated by the application in DNA origami. The central research on GOCs is to determine the value of \(\Phi (n\times m,k,\lambda _a,\lambda _c)\), i.e., the largest possible size among all \((n\times m,k,\lambda _a,\lambda _c)\)-GOCs. When \(\lambda _a=\lambda _c\), the exact values of \(\Phi (n\times m,3,1,1)\) and \(\Phi (n\times m,k,k-1,k-1)\) were recently determined by Wang and Su et al. In this paper, we research on the cases of \(\lambda _c=k-1\) and \(\lambda _a \le k-2\). We determine the exact values of \(\Phi (n\times m,k,k-2,k-1)\) and \(\Phi (n\times m,k,k-3,k-1)\), and give a calculation method of \(\Phi (n\times m,k,\lambda _a,k-1)\) with \(\lambda _a\le k-4\) for any positive integers nm and k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brualdi R.A.: Introductory Combinatorics. Pearson Education India, India (1977).

    Google Scholar 

  2. Chang Y., Wang X.: Determination of the exact value for \(\Psi (m, k, k-1)\). IEEE Trans. Inf. Theory 57(6), 3810–3814 (2011).

    Article  MathSciNet  Google Scholar 

  3. Chee Y.M., Kiah H.M., Ling S., Wei H.: Geometric orthogonal codes of size larger than optical orthogonal codes. IEEE Trans. Inf. Theory 64(4), 2883–2895 (2018).

    Article  Google Scholar 

  4. Chen J., Ji L., Li Y.: New optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4. Des. Codes Cryptogr. 85(2), 299–318 (2017).

    Article  MathSciNet  Google Scholar 

  5. Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inf. Theory 35, 595–604 (1989).

    Article  MathSciNet  Google Scholar 

  6. Doty D., Winslow A.: Design of geometric molecular bonds. IEEE Trans. Mol. Biol. Multi-Scale Commun. 3(1), 13–23 (2017).

    Article  Google Scholar 

  7. Fang Z., Zhou J.: The sizes of maximal \((v, k, k-2, k-1)\) optical orthogonal codes. Des. Codes Cryptogr. 88, 807–824 (2020).

    Article  MathSciNet  Google Scholar 

  8. Feng T., Wang L., Wang X.: Optimal 2-D \((n\times m,3,2,1)\)-optical orthogonal codes and related equi-difference conflict avoiding codes. Des. Codes Cryptogr. 87, 1499–1520 (2019).

    Article  MathSciNet  Google Scholar 

  9. Gerling T., Wagenbauer K.F., Neuner A.M., Dietz H.: Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347(6229), 1446–1452 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Huang Y., Chang Y.: Two classes of optimal two-dimensional OOCs. Des. Codes Cryptogr. 63, 357–363 (2012).

    Article  MathSciNet  Google Scholar 

  11. Huang Y., Chang Y.: The sizes of optimal \((n,4,\lambda ,3)\) optical orthogonal codes. Discret. Math. 312, 3128–3139 (2012).

    Article  MathSciNet  Google Scholar 

  12. Pan R., Feng T., Wang L., Wang X.: Optimal optical orthogonal signature pattern codes with weight three and cross-correlation constraint one. Des. Codes Cryptogr. 88, 119–131 (2020).

    Article  MathSciNet  Google Scholar 

  13. Pan R., Chang Y.: Determination of the sizes of optimal \((m, n, k, \lambda , k-1)\)-OOSPCs for \(\lambda =k-1, k\). Discret. Math. 313, 1327–1337 (2013).

    Article  MathSciNet  Google Scholar 

  14. Rothemund P.W.K.: Using lateral capillary forces to compute by self-assembly. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Su X., Wang L., Tian Z.: New bound and constructions for geometric orthogonal codes and geometric 180-rotating orthogonal codes. Adv. Math. Commun. 16, 961–983 (2022).

    Article  MathSciNet  Google Scholar 

  16. Wang L., Cai L., Feng T., Tian Z., Wang X.: Geometric orthogonal codes and geometrical difference packings. Des. Codes Cryptogr. 90(8), 1857–1879 (2022).

    Article  MathSciNet  Google Scholar 

  17. Wang X., Chang Y.: Further results on optimal \((v,4,2,1)\)-OOCs. Discret. Math. 312, 331–340 (2012).

    Article  MathSciNet  Google Scholar 

  18. Woo S., Rothemund P.W.K.: Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3(8), 620–627 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y.: New enumeration results about the optical orthogonal codes. Inf. Process. Lett. 40, 85–87 (1991).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihong Tian.

Additional information

Communicated by M. Buratti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC under Grant 11871019.

Appendices

Appendix

Proof of Lemma 3.14

For any \(B\in \Gamma _{1,2}\),

$$\begin{aligned} \tau (B)&=\{0,\mu ,\dots ,(i-2)\mu ,{\overline{(i-2)\mu }}, {\underline{(i-1)\mu }},\dots ,(k-2)\mu \},\\ \rho (B)&=\{y_1,y_1+\nu ,\dots ,y_1+(i-2)\nu , {\overline{y_i}}, {\underline{y_i+\nu }},\dots ,y_i+(k-i)\nu \}, \end{aligned}$$

where \(2\le i\le k\).

Next, we calculate the exact value of \(|\Gamma _{1,2}|\) by Lemma 3.11. For \(k\ge 5,\) we only need to calculate the number of all parameters \((i,j,\mu ,\nu ,y_1,x_i,y_i)\) corresponding to \(B\in \Gamma _{1,2}\). For \(k=4\), we need further minus half of the number of these parameters under the case of \((i,j)=(3,2)\). We count the number by classifying the different (ij)s. Under the case of each fixed (ij), it is easy to get that the number of parameters \((\mu ,x_i)\) is \(\lfloor \frac{n-1}{k-2}\rfloor .\)

(i) When \(\nu >0\), according to the size of \(y_1\) and \(y_i\), we divide it into the following two cases:

 (a) If \(y_1=0\le y_i\), similar to the case \(\Gamma _{1,1}\), there also require \(y_i\ne y_{i-1}\) for \(B\in \Gamma _{1,2}\). For each fixed \((i,j=i-1)\), the number of parameters \((\nu ,y_1=0,y_i)\) is \(\sum _{\nu =1}^{M_1}(m-(k-i)\nu )-\lfloor \frac{m-1}{k-2}\rfloor ,\) where \(M_1=\lfloor \frac{m-1}{i-2}\rfloor \) if \(\lfloor \frac{k+2}{2}\rfloor +1\le i\le k\) or \(M_1=\lfloor \frac{m-1}{k-i}\rfloor \) if \(2\le i\le \lfloor \frac{k+2}{2}\rfloor \).

 (b) If \(y_1>y_i=0\), note that \(y_i\ne y_{i-1}\) always holds in this case. Therefore for each fixed \((i,j=i-1)\), by the results of the case \(\Gamma _{1,1}\), the number of parameters \((\nu ,y_1,y_i=0)\) is \(\sum _{\nu =1}^{M_2}(m-1-(i-2)\nu ),\) where \(M_2=\min \{\lfloor \frac{m-2}{i-2}\rfloor ,\lfloor \frac{m-1}{k-i}\rfloor \}\) if \(2<i<k\) or \(M_2=\lfloor \frac{m-1}{k-i}\rfloor \) if \(i=2\) or \(M_2=\lfloor \frac{m-2}{i-2}\rfloor \) if \(i=k\).

Combining the above results, when \(k\ge 5\) we have

$$\begin{aligned} |\Gamma ^1_{1,2}|=\sum _{2\le i\le k}\lfloor \frac{n-1}{k-2}\rfloor \cdot \bigg \{\sum _{\nu =1}^{M_1}(m-(k-i)\nu )+ \sum _{\nu =1}^{M_2}(m-1-(i-2)\nu )-\lfloor \frac{m-1}{k-2}\rfloor \bigg \}. \end{aligned}$$

(ii) When \(\nu =0\), similar to case (i), we get

$$\begin{aligned} |\Gamma ^2_{1,2}|=\lfloor \frac{n-1}{k-2}\rfloor \cdot (k-1)\cdot (2m-2),~~ k\ge 5. \end{aligned}$$

(When \(k=4\), if we limit \(\nu =\nu '=0\), then there is no intersection sets in \(\Gamma _{1,2}\) by Lemma 3.11. Therefore the above formula for \(|\Gamma ^2_{1,2}|\) also holds for \(k=4\).)

(iii) When \(\nu <0\), by Lemma 3.12, \(|\Gamma ^3_{1,2}|=|\Gamma ^1_{1,2}|\).

When \(k\ge 5\), we get the conclusion immediately by summing the above three cases. When \(k=4\), it is not difficult to calculate that the number of intersection sets is \(\lfloor \frac{n-1}{2}\rfloor \cdot (m^2-m-\lfloor \frac{m-1}{2}\rfloor )\) by Lemma 3.11. Here, we need further remove these intersection sets to get the conclusion after detailed simplification. \(\square \)

Proof of Lemma 3.15

For any \(B\in \Gamma _{2,1}\),

$$\begin{aligned} \tau (B)= & {} \left\{ 0,\mu ,\dots ,(i-2)\mu , {\overline{x_i}},(i-1)\mu ,x_i+\mu ,\dots ,\frac{j+i-3}{2}\mu ,x_i \right. \\{} & {} \left. +\frac{j+1-i}{2}\mu , {\underline{x_i+\frac{j+3-i}{2}\mu }},\dots ,x_i+\frac{2k-j-i-1}{2}\mu \right\} ,\\ \rho (B)= & {} \left\{ y_1,y_1+\nu ,\dots ,y_1+(i-2)\nu ,{ \overline{y_i}},y_1+(i-1)\nu ,y_i +\nu ,\dots ,y_1+\frac{j+i-3}{2}\nu ,\right. \\{} & {} \left. y_i+\frac{j+1-i}{2}\nu , {\underline{y_i+\frac{j+3-i}{2}\nu }},\dots ,y_i+\frac{2k-j-i-1}{2}\nu \right\} , \end{aligned}$$

where \(2\le i\le k, 1\le j\le k-1, j\ge i, j-i\equiv 1\pmod {2}\), \((i-2)\mu<x_i<(i-1)\mu \). In particular, when \(k\equiv 0\pmod {2}\) and \((i,j)=(2,k-1)\), \((x_2,y_2)\ne (\frac{\mu }{2},y_1+\frac{\nu }{2})\).

Next, we calculate the exact value of \(|\Gamma _{2,1}|\) by Lemma 3.10. For \(k\ge 4\), we only need to calculate the number of all parameters \((i,j,\mu ,\nu ,y_1,x_i,y_i)\) corresponding to \(B\in \Gamma _{2,1}\). We count the number by classifying the different (ij)s. Under the case of each fixed (ij), we first calculate the number of sets satisfying \(\lambda _{\Delta B}((\mu ,\nu ))=k-2\), then remove the subcase of \(\lambda (\Delta B)=k-1\) by Lemma 3.2.

By Lemma 3.5, the number of parameters \((\mu ,x_i)\) is \(\sum _{\mu =1}^{\min \{N'_2,N_2\}}(\mu -1)+\sum _{\mu =N'_2+1}^{N_2}(n-1-\frac{2k-j+i-5}{2}\mu )\), where \(N_2=\lfloor \frac{2n-4}{2k-j+i-5}\rfloor \), \(N'_2=\lfloor \frac{2n}{2k-j+i-3}\rfloor \).

(i) When \(\nu >0\), according to the size of \(y_1\) and \(y_i\), we divide it into the following two cases:

 (a) If \(y_1=0\le y_i\), then the conditions \(y_i+\frac{2k-j-i-1}{2}\nu \le m-1\) and \(\frac{j+i-3}{2}\nu \le m-1\) yield \(1\le \nu \le \min \{\lfloor \frac{2(m-1)}{2k-j-i-1}\rfloor ,\lfloor \frac{2(m-1)}{j+i-3}\rfloor \}\triangleq M_3, 0\le y_i\le m-1-\frac{2k-j-i-1}{2}\nu \). Therefore for each fixed (ij), the number of parameters \((\nu ,y_1=0,y_i)\) is \(\sum _{\nu =1}^{M_3}(m-\frac{2k-j-i-1}{2}\nu ).\)

 (b) If \(y_1>y_i=0\), then the conditions \(y_1\ge 1,y_1+\frac{j+i-3}{2}\nu \le m-1\) and \(\frac{2k-j-i-1}{2}\nu \le m-1\) yield \(1\le \nu \le \min \{\lfloor \frac{2(m-1)}{2k-j-i-1}\rfloor ,\lfloor \frac{2(m-2)}{j+i-3}\rfloor \}\triangleq M_4\), \(1\le y_1\le m-1-\frac{j+i-3}{2}\nu \). Therefore for each fixed (ij), the number of parameters \((\nu ,y_1,y_i=0)\) is \(\sum _{\nu =1}^{M_4}(m-1-\frac{j+i-3}{2}\nu ).\)

For \(k\equiv 0 ~(\textrm{mod}~2)\), (ij) can take \((2,k-1)\). We further remove the sets satisfying \(\lambda (\Delta B)=k-1\), which holds only when \((i,j)=(2,k-1)\), \((x_2,y_2)=(\frac{\mu }{2},y_1+\frac{\nu }{2})\) and \(y_2>y_1=0\). These sets have the following form:

$$\begin{aligned} \{(0,0),(x_2,y_2),(2x_2,2y_2)\dots ,((k-1)x_2,(k-1)y_2)\}. \end{aligned}$$

Therefore, we get

$$\begin{aligned}{} & {} |\Gamma ^1_{2,1}|=\sum _{\begin{array}{c} 2\le i\le k-2,3\le j\le k-1\\ j>i~\textrm{and}~j-i\equiv 1~(\textrm{mod}~2) \end{array} }\bigg \{\sum _{\mu =1}^{\min \{N'_2,N_2\}}(\mu -1)+\sum _{\mu =N'_2+1}^{N_2}(n-1-\frac{2k-j+i-5}{2}\mu )\bigg \}\\{} & {} ~~~~~~~~~~~~~~~~~\cdot \bigg \{\sum _{\nu =1}^{M_3}(m-\frac{2k-j-i-1}{2}\nu )+\sum _{\nu =1}^{M_4}(m-1 -\frac{j+i-3}{2}\nu )\bigg \}-\lfloor \frac{n-1}{k-1}\rfloor \cdot \lfloor \frac{m-1}{k-1}\rfloor \cdot \gamma _k, \end{aligned}$$

where \(\gamma _k=1\) for \(k\equiv 0 ~(\textrm{mod}~2); \gamma _k=0\) for \(k\equiv 1 ~(\textrm{mod}~2)\).

(ii) When \(\nu =0\), similar to case (i), we can get:

$$\begin{aligned} |\Gamma ^2_{2,1}|=\sum _{\begin{array}{c} 2\le i\le k-2,3\le j\le k-1\\ j>i~\textrm{and}~j-i\equiv 1~(\textrm{mod}~2) \end{array} }\bigg \{\sum _{\mu =1}^{\min \{N'_2,N_2\}}(\mu -1)+\sum _{\mu =N'_2+1}^{N_2}(n-1-\frac{2k-j+i-5}{2}\mu )\bigg \}\cdot (2m-1) \end{aligned}$$

\(~~~~~~~~~~~~~~~~~~-\lfloor \frac{n-1}{k-1}\rfloor \cdot \gamma _k.\)

(iii) When \(\nu <0\), by Lemma 3.12, \(|\Gamma ^3_{2,1}|=|\Gamma ^1_{2,1}|\).

Summing the above three cases, we get the conclusion immediately. \(\square \)

Proof of Lemma 3.16

For \(B\in \Gamma _{2,2}\),

$$\begin{aligned} \tau (B)= & {} \{0,\mu ,\dots ,(i-2)\mu , {\overline{(i-2)\mu }},\dots ,\frac{j+i-3}{2}\mu ,\frac{j+i-3}{2}\mu ,\\{} & {} {\underline{\frac{j+i-1}{2}\mu }},\dots ,\frac{2k-j+i-5}{2}\mu \},\\ \rho (B)= & {} \{y_1,y_1+\nu ,\dots ,y_1+(i-2)\nu ,{ \overline{y_i}},\dots ,y_1+\frac{j+i-3}{2}\nu ,y_i+\frac{j+1-i}{2}\nu ,\\{} & {} {\underline{y_i+\frac{j+3-i}{2}\nu }},\dots ,y_i+\frac{2k-j-i-1}{2}\nu \}, \end{aligned}$$

where \(2\le i\le k, 1\le j\le k-1, j\ge i, j-i\equiv 1\pmod {2}\).

Next, we calculate the exact value of \(|\Gamma _{2,2}|\) by Lemma 3.11. For \(k\ge 4\), we first calculate the number of all parameters \((i,j,\mu ,\nu ,y_1,x_i,y_i)\) corresponding to \(B\in \Gamma _{2,2}\), then minus half of the number of parameters under the case of \((i,j)=(2,k-1)\) for \(k\equiv 0\pmod {2}\). We count the number by classifying the different (ij)s. Under the case of each fixed (ij), it is easy to know that the number of parameters \((\mu ,x_i)\) is \(\lfloor \frac{2(n-1)}{2k-j+i-5}\rfloor .\)

(i) When \(\nu >0\), according to the size of \(y_1\) and \(y_i\), we divide it into the following two cases:

 (a) If \(y_1=0\le y_i\), similar to the case \(\Gamma _{2,1}\), there also require \(y_i\ne y_{i-1}\) in \(\Gamma _{2,2}\). So it’s easy to get for each fixed (ij), the number of parameters \((\nu ,y_1=0,y_i)\) is \(\sum _{\nu =1}^{M_3}(m-\frac{2k-j-i-1}{2}\nu )-\lfloor \frac{2(m-1)}{2k+i-j-5}\rfloor ,\) where \(M_3=\min \{\lfloor \frac{2(m-1)}{2k-j-i-1}\rfloor ,\lfloor \frac{2(m-1)}{j+i-3}\rfloor \}\).

 (b) If \(y_1>y_i=0\), note that \(y_i\ne y_{i-1}\) always holds in this case. Therefore for each fixed (ij), by the results of the case \(\Gamma _{2,1}\), the number of parameters \((\nu ,y_1,y_i=0)\) is \(\sum _{\nu =1}^{M_4}(m-1-\frac{j+i-3}{2}\nu ),\) where \(M_4=\min \{\lfloor \frac{2(m-1)}{2k-j-i-1}\rfloor ,\lfloor \frac{2(m-2)}{j+i-3}\rfloor \}\).

By Lemma 3.11, when \(k\equiv 0 ~(\textrm{mod}~ 2)\) and \((i,j)=(2,k-1)\), we need to remove the following intersection sets:

$$\begin{aligned} \{(0,0),(0,y_2),(\mu ,\nu ),(\mu ,y_2+\nu ),\dots ,(\frac{k-2}{2}\mu ,\frac{k-2}{2}\nu ),(\frac{k-2}{2}\mu ,y_2+\frac{k-2}{2}\nu )\}, \end{aligned}$$

and the number of such sets is \(\sum _{\nu =1}^{\lfloor \frac{2(m-2)}{k-2}\rfloor }(m-1-\frac{k-2}{2}\nu )\cdot \lfloor \frac{2(n-1)}{k-2}\rfloor \). Therefore, we get

$$\begin{aligned}{} & {} |\Gamma ^1_{2,2}|=\sum _{\begin{array}{c} 2\le i\le k-2,3\le j\le k-1\\ j>i~\textrm{and}~j-i\equiv 1~(\textrm{mod}~2) \end{array} }\lfloor \frac{2(n-1)}{2k-j+i-5}\rfloor \cdot \bigg \{\sum _{\nu =1}^{M_3}(m-\frac{2k-j-i-1}{2}\nu )-\lfloor \frac{2(m-1)}{2k+i-j-5}\rfloor \\{} & {} ~~~~~~~~~~~~~~~~~+ \sum _{\nu =1}^{M_4}(m-1-\frac{j+i-3}{2}\nu )\bigg \} -\sum _{\nu =1}^{\lfloor \frac{2(m-1)}{k-2}\rfloor }(m-1-\frac{k-2}{2}\nu )\cdot \lfloor \frac{2(n-1)}{k-2}\rfloor \cdot \gamma _k, \end{aligned}$$

where \(\gamma _k=1\) for \(k\equiv 0 ~(\textrm{mod}~2); \gamma _k=0\) for \(k\equiv 1 ~(\textrm{mod}~2)\).

(ii) When \(\nu =0\), similar to case (i), we can get

$$\begin{aligned} |\Gamma ^2_{2,2}|=\sum _{\begin{array}{c} 2\le i\le k-2,3\le j\le k-1\\ j>i~\textrm{and}~j-i\equiv 1~(\textrm{mod}~2) \end{array} }\lfloor \frac{2(n-1)}{2k-j+i-5}\rfloor \cdot (2m-2)-\lfloor \frac{2(n-1)}{k-2}\rfloor \cdot (m-1)\cdot \gamma _k. \end{aligned}$$

(iii) When \(\nu <0\), \(|\Gamma ^3_{2,2}|=|\Gamma ^1_{2,2}|\).

Summing the above three cases, we get the conclusion immediately. \(\square \)

Proof of Lemma 3.17

For \(B\in \Gamma _{3,1}\),

$$\begin{aligned}{} & {} \tau (B)=\left\{ 0,\mu ,\dots ,(i-2)\mu , {\overline{x_i}},(i-1)\mu ,x_i+\mu ,\dots ,\frac{j+i-4}{2}\mu ,x_i\right. \\{} & {} \quad \left. +\frac{j-i}{2}\mu ,\frac{j+i-2}{2}\mu , {\underline{\frac{j+i}{2}\mu }}, \dots ,\frac{2k-j+i-4}{2}\mu \right\} ,\\{} & {} \rho (B)= \left\{ y_1,y_1+\nu ,\dots ,y_1+(i-2)\nu , {\overline{y_i}},y_1+(i-1)\nu ,y_i+\nu ,\dots ,y_1\right. \\{} & {} \quad \left. +\frac{j+i-4}{2}\nu ,y_i+\frac{j-i}{2}\nu , y_1+\frac{j+i-2}{2}\nu , {\underline{y_1+\frac{j+i}{2}\nu }},\dots ,y_1+\frac{2k-j+i-4}{2}\nu \right\} , \end{aligned}$$

where \(2\le i\le k, 1\le j\le k-1, j\ge i, j-i\equiv 0\pmod {2}\), \((i-2)\mu<x_i<(i-1)\mu \). In particular, when \(k\equiv 1\pmod {2}\) and \((i,j)=(2,k-1)\), \((x_2,y_2)\ne (\frac{\mu }{2},y_1+\frac{\nu }{2})\).

Next, we calculate the exact value of \(|\Gamma _{3,1}|\) by Lemma 3.10. For \(k\ge 4\), we only need to calculate the number of all parameters \((i,j,\mu ,\nu ,y_1,x_i,y_i)\) corresponding to \(B\in \Gamma _{3,1}\). We count the number by classifying the different (ij)s. Under the case of each fixed (ij), we first calculate the number of the sets satisfying \(\lambda _{\Delta B}((\mu ,\nu ))=k-2\), then remove the subcase of \(\lambda (\Delta B)=k-1\) by Lemma 3.2.

By Lemma 3.5, we get the number of parameters \((\mu ,x_i)\) is \(\sum _{\mu =1}^{N_3}(\mu -1),~\textrm{where}~ N_3=\lfloor \frac{2n-2}{2k-j+i-4}\rfloor .\)

(i) When \(\nu >0\), according to the size of \(y_1\) and \(y_i\), we divide it into the following two cases:

 (a) If \(y_1=0\le y_i\), then the conditions \(y_i+\frac{j-i}{2}\nu \le m-1\) and \(\frac{2k-j+i-4}{2}\nu \le m-1\) yield \(1\le \nu \le \lfloor \frac{2(m-1)}{2k-j+i-4}\rfloor \triangleq M_5, 0\le y_i\le m-1-\frac{j-i}{2}\nu \). Under the case of each fixed (ij), the number of parameters \((\nu ,y_1=0,y_i)\) is \(\sum _{\nu =1}^{M_5}(m-\frac{j-i}{2}\nu ). \)

 (b) If \(y_1>y_i=0\), then the conditions \(y_1\ge 1,y_1+\frac{2k-j+i-4}{2}\nu \le m-1\) and \(\frac{j-i}{2}\nu \le m-1\) yield \(1\le \nu \le M_6\), where \(M_6=\min \{\lfloor \frac{2(m-2)}{2k-j+i-4}\rfloor ,\lfloor \frac{2(m-1)}{j-i}\rfloor \}\) if \(i\ne j\) or \(M_6=\lfloor \frac{m-2}{k-2}\rfloor \) if \(i=j\), \(1\le y_1\le m-1-\frac{2k-j+i-4}{2}\nu \). Therefore for each fixed (ij), the number of parameters \((\nu ,y_1,y_i=0)\) is \(\sum _{\nu =1}^{M_6}(m-1-\frac{2k-j+i-4}{2}\nu ).\)

For \(k\equiv 1 ~(\textrm{mod}~2)\), (ij) can take \((2,k-1)\). Similar to \(\Gamma _{2,1}\), we need to remove the following sets:

$$\{(0,0),(x_2,y_2),(2x_2,2y_2)\dots ,((k-1)x_2,(k-1)y_2)\}.$$

Therefore, we get

$$\begin{aligned} |\Gamma ^1_{3,1}|=\sum _{\begin{array}{c} 2\le i\le k-1,2\le j\le k-1\\ j\ge i~\textrm{and}~j-i\equiv 0~(\textrm{mod}~2) \end{array} }\sum _{\mu =1}^{N_3}\bigg \{\sum _{\nu =1}^{M_5}(m-\frac{j-i}{2}\nu )+\sum _{\nu =1}^{M_6}(m-1-\frac{2k-j+i-4}{2}\nu )\bigg \}\cdot (\mu -1) \end{aligned}$$

\(~~~~~~~~~~~~~~~~-\lfloor \frac{n-1}{k-1}\rfloor \cdot \lfloor \frac{m-1}{k-1}\rfloor \cdot (1-\gamma _k),\)

where \(\gamma _k=1\) for \(k\equiv 0 ~(\textrm{mod}~2); \gamma _k=0\) for \(k\equiv 1 ~(\textrm{mod}~2)\).

(ii) When \(\nu =0\), similar to case (1), we can get:

$$|\Gamma ^2_{3,1}|=\sum _{\begin{array}{c} 2\le i\le k-1,2\le j\le k-1\\ j\ge i~\textrm{and}~j-i\equiv 0~(\textrm{mod}~2) \end{array} }\sum _{\mu =1}^{N_3}(\mu -1)\cdot (2\,m-1)-\lfloor \frac{n-1}{k-1}\rfloor \cdot (1-\gamma _k).$$

(iii) When \(\nu <0\), by Lemma 3.12, \(|\Gamma ^3_{3,1}|=|\Gamma ^1_{3,1}|\).

Summing the above three cases, we get the conclusion immediately. \(\square \)

Proof of Lemma 3.18

For \(B\in \Gamma _{3,2}\),

$$\begin{aligned} \tau (B)= & {} \left\{ 0,\mu ,\dots ,(i-2)\mu , {\overline{(i-2)\mu }},\dots ,\frac{j+i-4}{2}\mu ,\frac{j+i-4}{2}\mu ,\right. \\{} & {} \left. \frac{j+i-2}{2}\mu , {\underline{\frac{j+i}{2}\mu }},\dots ,\frac{2k-j+i-4}{2}\mu \right\} ,\\ \rho (B)= & {} \left\{ y_1,y_1+\nu ,\dots ,y_1+(i-2)\nu , {\overline{y_i}},\dots ,y_1+\frac{j+i-4}{2}\nu ,y_i+\frac{j-i}{2}\nu ,y_1 \right. \\{} & {} \left. +\frac{j+i-2}{2}\nu , {\underline{y_1+\frac{j+i}{2}\nu }}, \dots ,y_1+\frac{2k-j+i-4}{2}\nu \right\} , \end{aligned}$$

where \(2\le i\le k, 1\le j\le k-1, j\ge i, j-i\equiv 0\pmod {2}\).

Next, we calculate the exact value of \(|\Gamma _{3,2}|\) by Lemma 3.11. For \(k\ge 4\), we only need to calculate the number of all parameters \((i,j,\mu ,\nu ,y_1,x_i,y_i)\) corresponding to \(B\in \Gamma _{3,2}\). We count the number by classifying the different (ij)s. Under the case of each fixed (ij), we first calculate the number of parameters \((\mu ,x_i)\) is \(\lfloor \frac{2(n-1)}{2k-j+i-4}\rfloor .\)

(i) When \(\nu >0\), according to the size of \(y_1\) and \(y_i\), we divide it into the following two cases:

 (a) If \(y_1=0\le y_i\), similar to the case \(\Gamma _{3,1}\), there also require \(y_i\ne y_{i-1}\) in \(\Gamma _{3,2}\). For each fixed (ij), it’s easy to get that the number of parameters \((\nu ,y_1=0,y_i)\) is \(\sum _{\nu =1}^{M_5}(m-1-\frac{j-i}{2}\nu ),~\textrm{where}~ M_5=\lfloor \frac{2(m-1)}{2k-j+i-4}\rfloor .\)

 (b) If \(y_1>y_i=0\), note that \(y_i\ne y_{i-1}\) always holds in this case. Therefore for each fixed (ij), by the results of the case \(\Gamma _{3,1}\), the number of parameters \((\nu ,y_1,y_i=0)\) is \(\sum _{\nu =1}^{M_6}(m-1-\frac{2k-j+i-4}{2}\nu )\), where \(M_6=\min \{\lfloor \frac{2(m-2)}{2k-j+i-4}\rfloor ,\lfloor \frac{2(m-1)}{j-i}\rfloor \}\) if \(i\ne j\) or \(M_6=\lfloor \frac{m-2}{k-2}\rfloor \) if \(i=j\).

Therefore, we get

$$\begin{aligned} |\Gamma ^1_{3,2}|=&\sum _{\begin{array}{c} 3\le i\le k-1,3\le j\le k-1\\ j\ge i~\textrm{and}~j-i\equiv 0~(\textrm{mod}~2) \end{array} }\lfloor \frac{2(n-1)}{2k-j+i-4}\rfloor \cdot \bigg \{\sum _{\nu =1}^{M_5}(m-1-\frac{j-i}{2}\nu )\\ {}&+\sum _{\nu =1}^{M_6}(m-1-\frac{2k-j+i-4}{2}\nu )\bigg \}. \end{aligned}$$

(ii) When \(\nu =0\), similar to case (i), we can get

$$\begin{aligned} |\Gamma ^2_{3,2}|=\sum _{\begin{array}{c} 3\le i\le k-1,3\le j\le k-1\\ j\ge i~\textrm{and}~j-i\equiv 0~(\textrm{mod}~2) \end{array} }\lfloor \frac{2(n-1)}{2k-j+i-4}\rfloor \cdot (2m-2). \end{aligned}$$

(iii) When \(\nu <0\), by Lemma 3.12, \(|\Gamma ^3_{3,2}|=|\Gamma ^1_{3,2}|\).

Summing the above three cases, we get the conclusion immediately. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Tian, Z. & Hao, G. Determination of the sizes of optimal geometric orthogonal codes with parameters \((n\times m,k,\lambda ,k-1)\). Des. Codes Cryptogr. 92, 365–395 (2024). https://doi.org/10.1007/s10623-023-01312-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01312-7

Keywords

Mathematics Subject Classification

Navigation