Skip to main content
Log in

Towards a Gröbner-free approach to coding

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Recently, new studies on the decoding of cyclic codes have been developed. They place themselves under the umbrella of Cooper Philosophy and they consist in using (sparse) locator polynomials, which, once evaluated at the syndromes, return the error locations. In particular, it has been recently shown that it is not necessary to use Gröbner bases to compute such kind of polynomials, and that some sparse versions can be found (at least for error correction capability at most 2), using interpolation on the syndrome variety. In this paper, we study the combinatorial structure of the syndrome variety of a cyclic code and some of its variants, for error correction capability 2, by means of standard monomials. Such monomials can be found without computing a Gröbner basis of the syndrome ideal, neither performing any step of Buchberger reduction, that is, in a degröbnerized way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data are publicly available.

Notes

  1. The recent mood, not depending on the network technology of the Sixties, and thus not needing the key equation, prefers considering the plain error locator polynomial \(\prod _{j=1}^{\mu } (x-\alpha ^{\ell _j})\).

  2. Monomials’ representation given by the Bar Code has several applications. See for example [11, 13, 14].

  3. The interested reader can find them at https://sites.google.com/view/michela-ceria-home-page/links.

References

  1. Alonso M.E., Marinari M.G., Mora T.: The big mother of all dualities 2: Macaulay bases. Appl. Algebra Eng. Commun. Comput. 17(6), 409–451 (2006).

    Article  MathSciNet  Google Scholar 

  2. Augot D., Bardet M., Faugere J.-C.: Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Grobner bases. In: IEEE International Symposium on Information Theory-ISIT’2003, p. 362 (2003). IEEE Computer Society.

  3. Augot D., Bardet M., Faugere J.-C.: On formulas for decoding binary cyclic codes. In: 2007 IEEE International Symposium on Information Theory, pp. 2646–2650 (2007). IEEE.

  4. Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968).

    Google Scholar 

  5. Caboara M., Mora T.: The Chen-Reed-Helleseth-Truong decoding algorithm and the Gianni-Kalkbrenner Gröbner shape theorem. Appl. Algebra Eng. Commun. Comput. 13(3), 209–232 (2002). https://doi.org/10.1007/s002000200097.

    Article  Google Scholar 

  6. Caruso F., Orsini E., Sala M., Tinnirello C.: On the shape of the general error locator polynomial for cyclic codes. IEEE Trans. Inf. Theory 63(6), 3641–3657 (2017). https://doi.org/10.1109/TIT.2017.2692213.

    Article  MathSciNet  Google Scholar 

  7. Ceria M.: Combinatorics of ideals of points: a cerlienco-mureddu-like approach for an iterative lex game. arXiv preprint arXiv:1805.09165 (2018).

  8. Ceria M.: Half error locator polynomials for efficient decoding of binary cyclic codes. in preparation.

  9. Ceria M.: A proof of the“axis of evil theorem’’ for distinct points. Rend. Semin. Mat. Univ. Politec. Torino 72(3–4), 213–233 (2014).

    MathSciNet  Google Scholar 

  10. Ceria M.: Bar code for monomial ideals. J. Symb. Comput. 91, 30–56 (2019). https://doi.org/10.1016/j.jsc.2018.06.012.

    Article  MathSciNet  Google Scholar 

  11. Ceria M.: Bar code vs Janet tree. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur 97(2), 6–12 (2019). https://doi.org/10.1478/AAPP.972A6.

    Article  MathSciNet  Google Scholar 

  12. Ceria M.: Bar code: a visual representation for finite sets of terms and its applications. Math. Comput. Sci. 14(2), 497–513 (2020). https://doi.org/10.1007/s11786-019-00425-4.

    Article  MathSciNet  Google Scholar 

  13. Ceria M.: Bar code and Janet-like division. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur 100(1), 2–10 (2022). https://doi.org/10.1478/AAPP.1001A2.

    Article  MathSciNet  Google Scholar 

  14. Ceria M.: Applications of bar code to involutive divisions and a “greedy’’ algorithm for complete sets. Math. Comput. Sci. 16(4), 30–17 (2022). https://doi.org/10.1007/s11786-022-00548-1.

    Article  MathSciNet  Google Scholar 

  15. Ceria M., Mora T., Sala M.: Zech tableaux as tools for sparse decoding. Rend. Semin. Mat. Univ. Politec. Torino 78(1), 43–56 (2020).

    MathSciNet  Google Scholar 

  16. Ceria M., Mora T., Sala M.: HELP: a sparse error locator polynomial for BCH codes. Appl. Algebra Eng. Commun. Comput. 31(3–4), 215–233 (2020). https://doi.org/10.1007/s00200-020-00427-x.

    Article  MathSciNet  Google Scholar 

  17. Ceria M., Lundqvist S., Mora T.: Degröbnerization: a political manifesto. Appl. Algebra Eng. Commun. Comput. 33(6), 675–723 (2022). https://doi.org/10.1007/s00200-022-00586-z.

    Article  Google Scholar 

  18. Cerlienco L., Mureddu M.: From algebraic sets to monomial linear bases by means of combinatorial algorithms. vol. 139, pp. 73–87 (1995). https://doi.org/10.1016/0012-365X(94)00126-4 . Formal power series and algebraic combinatorics (Montreal, PQ, 1992).

  19. Cerlienco L., Mureddu M.: Algoritmi combinatori per l’interpolazione polinomiale in dimensione \(\ge 2\). Sém. Lothar. Comb. 24, 37 (1990).

    Google Scholar 

  20. Cerlienco L., Mureddu M.: Multivariate interpolation and standard bases for Macaulay modules. J. Algebra 251(2), 686–726 (2002). https://doi.org/10.1006/jabr.2001.9061.

    Article  MathSciNet  Google Scholar 

  21. Chen X., Reed I.S., Helleseth T., Truong T.K.: Algebraic decoding of cyclic codes: a polynomial ideal point of view. In: Finite Fields: Theory, Applications, and Algorithms (Las Vegas, NV, 1993). Contemp. Math., vol. 168, pp. 15–22. Amer. Math. Soc., Providence (1994). https://doi.org/10.1090/conm/168/01685.

  22. Chen X., Reed I.S., Helleseth T., Truong T.K.: Use of Gröbner bases to decode binary cyclic codes up to the true minimum distance. IEEE Trans. Inf. Theory 40(5), 1654–1661 (1994). https://doi.org/10.1109/18.333885.

    Article  Google Scholar 

  23. Chen X., Reed I.S., Helleseth T., Truong T.K.: General principles for the algebraic decoding of cyclic codes. IEEE Trans. Inf. Theory 40(5), 1661–1663 (1994). https://doi.org/10.1109/18.333886.

    Article  MathSciNet  Google Scholar 

  24. Cooper A.B.: Direct solution of BCH decoding equations. Commun. Control Signal Process. 281–286 (1990).

  25. Cooper A.B.: Finding BCH error locator polynomials in one step. Electron. Lett. 22(27), 2090–2091 (1991).

    Article  Google Scholar 

  26. Coppersmith D., Winograd S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990).

    Article  MathSciNet  Google Scholar 

  27. Felszeghy B., Ráth B., Rónyai L.: The lex game and some applications. J. Symb. Comput. 41(6), 663–681 (2006). https://doi.org/10.1016/j.jsc.2005.11.003.

    Article  MathSciNet  Google Scholar 

  28. Gianni P.: Properties of Gröbner bases under specializations. In: EUROCAL ’87 (Leipzig, 1987). Lecture Notes in Comput. Sci., vol. 378, pp. 293–297. Springer, Berlin (1989). https://doi.org/10.1007/3-540-51517-8_128.

  29. Hoeven J., Larrieu R.: Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals. Appl. Algebra Eng. Commun. Comput. 30(6), 509–539 (2019). https://doi.org/10.1007/s00200-019-00389-9.

    Article  Google Scholar 

  30. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes, p. 646. Cambridge University Press, Cambridge (2003) https://doi.org/10.1017/CBO9780511807077.

    Book  Google Scholar 

  31. Kalkbrener M.: Solving systems of algebraic equations by using Gröbner bases. In: EUROCAL ’87 (Leipzig, 1987). Lecture Notes in Comput. Sci., vol. 378, pp. 282–292. Springer, Berlin (1989). https://doi.org/10.1007/3-540-51517-8_127.

  32. Lazard D.: Ideal bases and primary decomposition: case of two variables. J. Symb. Comput. 1(3), 261–270 (1985).

    Article  MathSciNet  Google Scholar 

  33. Loustaunau P., York E.V.: On the decoding of cyclic codes using Gröbner bases. Appl. Algebra Eng. Commun. Comput. 8(6), 469–483 (1997). https://doi.org/10.1007/s002000050084.

    Article  Google Scholar 

  34. Lundqvist S.: Vector space bases associated to vanishing ideals of points. J. Pure Appl. Algebra 214(4), 309–321 (2010). https://doi.org/10.1016/j.jpaa.2009.05.013.

    Article  MathSciNet  Google Scholar 

  35. Macaulay F.S.: Some properties of enumeration in the theory of modular systems. Proc. Lond. Math. Soc. 26(2), 531–555 (1927). https://doi.org/10.1112/plms/s2-26.1.531.

    Article  MathSciNet  Google Scholar 

  36. Marinari M.G., Möller H.M., Mora T.: Gröbner bases of ideals given by dual bases. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, pp. 55–63 (1991).

  37. Marinari M.G., Mora T., Möller H.M.: Gröbner duality and multiplicities in polynomial system solving. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 167–179 (1995).

  38. Marinari M.G., Mora T.: A remark on a remark by Macaulay or enhancing Lazard structural theorem. Bull. Iranian Math. Soc. 29(1), 1–4585 (2003).

    MathSciNet  Google Scholar 

  39. Marinari M.G., Möller H.M., Mora T.: Gröbner bases of ideals defined by functionals with an application to ideals of projective points. Appl. Algebra Eng. Commun. Comput. 4(2), 103–145 (1993). https://doi.org/10.1007/BF01386834.

    Article  Google Scholar 

  40. Möller H.M., Buchberger B.: The construction of multivariate polynomials with preassigned zeros. In: Computer Algebra (Marseille, 1982). Lecture Notes in Comput. Sci., vol. 144, pp. 24–31. Springer, Berlin (1982).

  41. Mora T., Orsini E.: Invited talk: decoding cyclic codes: the Cooper philosophy (extended abstract). In: Mathematical Methods in Computer Science. Lecture Notes in Comput. Sci., vol. 5393, pp. 126–127. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-89994-5_10.

  42. Mora T.: Solving Polynomial Equation Systems, vol. 4. Cambridge University Press, Cambridge (I (2003), II (2005), III (2015), IV (2016)).

  43. Mora F.: De nugis Groebnerialium. II. Applying Macaulay’s trick in order to easily write a Gröbner basis. Appl. Algebra Eng. Commun. Comput. 13(6), 437–446 (2003). https://doi.org/10.1007/s00200-002-0112-2.

    Article  Google Scholar 

  44. Mourrain B.: A new criterion for normal form algorithms. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Honolulu, HI, 1999). Lecture Notes in Comput. Sci., vol. 1719, pp. 430–443. Springer, Berlin (1999). https://doi.org/10.1007/3-540-46796-3_41.

  45. Orsini E., Sala M.: Correcting errors and erasures via the syndrome variety. J. Pure Appl. Algebra 200(1–2), 191–226 (2005). https://doi.org/10.1016/j.jpaa.2004.12.027.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research is partially supported by GNSAGA- Istituto Nazionale di Alta Matematica “Francesco Severi”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Ceria.

Ethics declarations

Conflict of interest

The authors explicitly decleare the absence of (financial or non-financial) competing interests directly or indirectly related to the work submitted for publication.

Additional information

Communicated by A. Winterhof.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceria, M., Mora, T. Towards a Gröbner-free approach to coding. Des. Codes Cryptogr. 92, 179–204 (2024). https://doi.org/10.1007/s10623-023-01302-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01302-9

Keywords

Mathematics Subject Classification

Navigation