Skip to main content
Log in

Plane curves giving rise to blocking sets over finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In recent years, many useful applications of the polynomial method have emerged in finite geometry. Indeed, algebraic curves, especially those defined by Rédei-type polynomials, are powerful in studying blocking sets. In this paper, we reverse the engine and study when blocking sets can arise from rational points on plane curves over finite fields. We show that irreducible curves of low degree cannot provide blocking sets and prove more refined results for cubic and quartic curves. On the other hand, using tools from number theory, we construct smooth plane curves defined over \(\mathbb {F}_p\) of degree at most \(4p^{3/4}+1\) whose points form blocking sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Anbar N., Bartoli D., Giulietti M., Platoni I.: Small complete caps from singular cubics. J. Combin. Des. 22(10), 409–424 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  2. Anbar N., Bartoli D., Platoni I., Giulietti M.: Small complete caps from singular cubics, II. J. Algebr. Combin. 41(1), 185–216 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  3. Asgarli, S., Duan, L., Lai, K.-W.: Frobenius nonclassical hypersurfaces. https://arxiv.org/abs/2207.11981 (2022)

  4. Asgarli S., Ghioca D.: Smoothness in pencils of hypersurfaces over finite fields. Bull. Aust. Math. Soc. 107(1), 85–94 (2023).

    Article  MathSciNet  MATH  Google Scholar 

  5. Akbary A., Ghioca D., Wang Q.: On constructing permutations of finite fields. Finite Fields Appl. 17(1), 51–67 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. Asgarli, S., Ghioca, D., Yip, C.H.: Most plane curves over finite fields are not blocking. https://arxiv.org/abs/2211.08523 (2022)

  7. Aubry Y., Perret M., Weil A.: Theorem for Singular Curves, Arithmetic, Geometry and Coding Theory (Luminy 1993), pp. 1–7. de Gruyter, Berlin (1996).

    Book  Google Scholar 

  8. Borges H., Homma M.: Points on singular Frobenius nonclassical curves. Bull. Braz. Math. Soc. (N.S.) 48(1), 93–101 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  9. Blokhuis A.: On the size of a blocking set in \({\rm PG}(2, p)\). Combinatorica 14(1), 111–114 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  10. Bartoli D., Micheli G.: Algebraic constructions of complete m-Arcs. Combinatorica 42(5), 673–700 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  11. Bartoli D., Marcugini S., Pambianco F.: On the completeness of plane cubic curves over finite fields. Des. Codes Cryptogr. 83(2), 233–267 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. Borges H., Motta B., Torres F.: Complete arcs arising from a generalization of the Hermitian curve. Acta Arith. 164(2), 101–118 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. Bombieri E.: On the large sieve. Mathematika 12, 201–225 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  14. Borges H.: On complete \((N, d)\)-arcs derived from plane curves. Finite Fields Appl. 15(1), 82–96 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. Bruen A.: Baer subplanes and blocking sets. Bull. Am. Math. Soc. 76, 342–344 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  16. Gács A.: On a generalization of Rédei’s theorem. Combinatorica 23(4), 585–598 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao S.: Absolute irreducibility of polynomials via Newton polytopes. J. Algebra 237(2), 501–520 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  18. Giulietti M.: On plane arcs contained in cubic curves. Finite Fields Appl. 8(1), 69–90 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  19. Giulietti M., Korchmáros G., Timpanella M.: On the Dickson–Guralnick–Zieve curve. J. Number Theory 196, 114–138 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  20. Giulietti M., Pambianco F., Torres F., Ughi E.: On complete arcs arising from plane curves. Des. Codes Cryptogr. 25(3), 237–246 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  21. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1979).

    MATH  Google Scholar 

  22. Hirschfeld J.W.P., Voloch J.F.: The characterization of elliptic curves over finite fields. J. Aust. Math. Soc. Ser. A 45(2), 275–286 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  23. Hefez A., Voloch J.F.: Frobenius nonclassical curves. Arch. Math. (Basel) 54(3), 263–273 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  24. Korchmáros, G., Péter Nagy, G., Szőnyi, T.: Algebraic approach to the completeness problem for \((k,n)\)-arcs in planes over finite fields. https://arxiv.org/abs/2302.10162 (2023)

  25. Linnik U.V.: On the least prime in an arithmetic progression. I. The basic theorem. Rec. Math. 15(57), 139–178 (1944).

    MathSciNet  MATH  Google Scholar 

  26. Linnik U.V.: On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon. Rec. Math. 15(57), 347–368 (1944).

    MathSciNet  MATH  Google Scholar 

  27. Lidl R., Niederreiter H.: Finite Fields, Second Encyclopedia of Mathematics and its Applications, p. 20. Cambridge University Press, Cambridge (1997).

    Google Scholar 

  28. Li S., Pott A.: Intersection distribution, non-hitting index and Kakeya sets in affine planes. Finite Fields Appl. 66, 101691 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  29. Montgomery H.L., Vaughan R.C.: The large sieve. Mathematika 20, 119–134 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  30. Pardini R.: Some remarks on plane curves over fields of finite characteristic. Compos. Math. 60(1), 3–17 (1986).

    MathSciNet  MATH  Google Scholar 

  31. Segre B.: Introduction to Galois geometries. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia 8(8), 133–236 (1967).

    MathSciNet  MATH  Google Scholar 

  32. Sziklai P., Szőnyi T.: Blocking sets and algebraic curves. Rend. Circ. Mat. Palermo 51(2), 71–86 (1998).

    MathSciNet  MATH  Google Scholar 

  33. Stöhr K., Voloch J.F.: Weierstrass points and curves over finite fields. Proc. Lond. Math. Soc. 3(1), 1–19 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  34. Szőnyi T.: Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl. 3(3), 187–202 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  35. Szőnyi, T.: Some Applications of Algebraic Curves in Finite Geometry and Combinatorics, 1997, Surveys in Combinatorics (London), London Math. Soc. Lecture Note Ser, , pp. 197–236. Cambridge University Press, Cambridge (1997)

  36. Xylouris, T.: Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression, Bonner Mathematische Schriften [Bonn Mathematical Publications], Universität Bonn, Mathematisches Institut, Bonn, 2011, 404, Dissertation for the degree of Doctor of Mathematics and Natural Sciences at the University of Bonn, Bonn (2011)

Download references

Acknowledgements

The authors thank Greg Martin and József Solymosi for helpful discussions. During the preparation of this manuscript, the first author was supported by a postdoctoral research fellowship from the University of British Columbia and the NSERC PDF award. The second author is supported by an NSERC Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Hoi Yip.

Additional information

Communicated by G. Korchmaros.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgarli, S., Ghioca, D. & Yip, C.H. Plane curves giving rise to blocking sets over finite fields. Des. Codes Cryptogr. 91, 3643–3669 (2023). https://doi.org/10.1007/s10623-023-01264-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01264-y

Keywords

Mathematics Subject Classification

Navigation