Skip to main content
Log in

Projective tilings and full-rank perfect codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A tiling of a vector space S is the pair (UV) of its subsets such that every vector in S is uniquely represented as the sum of a vector from U and a vector from V. A tiling is connected to a perfect codes if one of the sets, say U, is projective, i.e., the union of one-dimensional subspaces of S. A tiling (UV) is full-rank if the affine span of each of U, V is S. For finite non-binary vector spaces of dimension at least 6 (at least 10), we construct full-rank tilings (UV) with projective U (both U and V, respectively). In particular, that construction gives a full-rank ternary 1-perfect code of length 13, solving a known problem. We also discuss the treatment of tilings with projective components as factorizations of projective spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The dataset generated during the current study (examples of full-rank ternary \((13,3^{10},3)_3\) perfect codes) is available in the IEEE DataPort repository [13].

References

  1. Avgustinovich S.V., Gorkunov E.V.: Maximum intersection of linear codes and codes equivalent to linear. J. Appl. Ind. Math. 13(4), 600–605 (2019). https://doi.org/10.1134/S1990478919040021 translated from Diskretn. Anal. Issled. Oper. 26(4), 5–15 (2019).

  2. Avgustinovich S.V., Solov’eva F.I., Heden O.: On ranks and kernels problem of perfect codes. Probl. Inf. Transm. 39(4), 341–345 (2003). https://doi.org/10.1023/B:PRIT.0000011272.10614.8c translated from Probl. Peredachi Inf. 39(4), 30–34 (2003).

  3. Blokhuis A., Lam C.W.H.: More coverings by rook domains. J. Comb. Theory Ser. A 36(2), 240–244 (1984). https://doi.org/10.1016/0097-3165(84)90010-4.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen G., Litsyn S., Vardy A., Zémor G.: Tilings of binary spaces. SIAM J. Discret. Math. 9(3), 393–412 (1996). https://doi.org/10.1137/S0895480195280137.

    Article  MathSciNet  MATH  Google Scholar 

  5. den Breeijen S.: Tilings of additive groups. Master’s thesis, Radboud University Nijmegen, 2018. https://www.math.ru.nl/~bosma/Students/SterredenBreeijenMSc.pdf.

  6. Dinitz M.: Full rank tilings of finite abelian groups. SIAM J. Discret. Math. 20(1), 160–170 (2006). https://doi.org/10.1137/S0895480104445794.

    Article  MathSciNet  MATH  Google Scholar 

  7. Etzion T., Vardy A.: Perfect binary codes: constructions, properties and enumeration. IEEE Trans. Inf. Theory 40(3), 754–763 (1994). https://doi.org/10.1109/18.335887.

    Article  MathSciNet  MATH  Google Scholar 

  8. Etzion T., Vardy A.: On perfect codes and tilings: problems and solutions. SIAM J. Discret. Math. 11(2), 205–223 (1998). https://doi.org/10.1137/S0895480196309171.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fraser O.H., Gordon B.: Solution to a problem of A. D. Sands. Glasdow Math. J. 20(2), 115–117 (1979). https://doi.org/10.1017/S0017089500003803.

    Article  MathSciNet  MATH  Google Scholar 

  10. Golay M.J.E.: Notes on digital coding. Proc. IRE 37(6), 657 (1949). https://doi.org/10.1109/JRPROC.1949.233620.

    Article  MathSciNet  Google Scholar 

  11. Hamming R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950). https://doi.org/10.1002/j.1538-7305.1950.tb00463.x.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kokkala J.I., Krotov D.S., Östergård P.R.J.: On the classification of MDS codes. IEEE Trans. Inf. Theory 61(12), 6485–6492 (2015). https://doi.org/10.1109/TIT.2015.2488659.

    Article  MathSciNet  MATH  Google Scholar 

  13. Krotov D.: Perfect and related codes (dataset). IEEE Dataport (2022). https://doi.org/10.21227/w856-4b70.

  14. Malyugin S.A.: Systematic and nonsystematic perfect codes of infinite length over finite fields. Sib. Èlektron. Mat. Izv. 16, 1732–1751 (2019). https://doi.org/10.33048/semi.2019.16.122. (in Russian).

    Article  MathSciNet  MATH  Google Scholar 

  15. Malyugin S.A.: Linear perfect codes of infinite length over infinite fields. Sib. Èlektron. Mat. Izv. 17, 1165–1182 (2020). https://doi.org/10.33048/semi.2020.17.088.

  16. Okuda C.: The factorization of abelian groups. PhD thesis, The Pennsylvania State University (1975).

  17. Östergård P.J.R., Szabó S.: Elementary \(p\)-groups with the Rédei property. Int. J. Algebra Comput. 17(1), 171–178 (2007). https://doi.org/10.1142/S0218196707003536.

    Article  MATH  Google Scholar 

  18. Phelps K.T., Rifà J., Villanueva M.: Kernels and \(p\)-kernels of \(p^r\)-ary \(1\)-perfect codes. Des. Codes Cryptogr. 37(2), 243–261 (2005). https://doi.org/10.1007/s10623-004-3989-x.

    Article  MathSciNet  MATH  Google Scholar 

  19. Phelps K.T., Villanueva M.: On perfect codes: rank and kernel. Des. Codes Cryptogr. 27(3), 183–194 (2002). https://doi.org/10.1023/A:1019936019517.

    Article  MathSciNet  MATH  Google Scholar 

  20. Phelps K.T., Villanueva M.: Ranks of \(q\)-ary \(1\)-perfect codes. Des. Codes Cryptogr. 27(1–2), 139–144 (2002). https://doi.org/10.1023/A:1016510804974.

    Article  MathSciNet  MATH  Google Scholar 

  21. Romanov A.M.: On non-full-rank perfect codes over finite fields. Des. Codes Cryptogr. 87(5), 995–1003 (2019). https://doi.org/10.1007/s10623-018-0506-1.

    Article  MathSciNet  MATH  Google Scholar 

  22. Schönheim J.: On linear and nonlinear single-error-correcting \(q\)-ary perfect codes. Inf. Control 12(1), 23–26 (1968). https://doi.org/10.1016/S0019-9958(68)90167-8.

    Article  MATH  Google Scholar 

  23. Shi M., Krotov D.S.: An enumeration of \(1\)-perfect ternary codes. Discret. Math. 346(7), 113437 (2023). https://doi.org/10.1016/j.disc.2023.113437.

    Article  MathSciNet  MATH  Google Scholar 

  24. Shi M., Wu R., Krotov D.S.: On \(Z_p Z_{p^k}\)-additive codes and their duality. IEEE Trans. Inf. Theory 65(6), 3841–3847 (2019). https://doi.org/10.1109/TIT.2018.2883759.

    Article  MATH  Google Scholar 

  25. Szabó S.: Topics in Factorization of Abelian Groups. Texts and Readings in Mathematics, vol. 29. Hindustan Book Agency, Gurgaon (2004) https://doi.org/10.1007/978-93-86279-22-4.

    Book  Google Scholar 

  26. Szabó S.: Constructions related to the Rédei property of groups. J. Lond. Math. Soc. II. Ser. 73(3), 701–715 (2006). https://doi.org/10.1112/S0024610706022861.

    Article  MATH  Google Scholar 

  27. Szabó S.: Full-rank factorings of elementary \(p\)-groups by \(Z\)-subsets. Indag. Math. 24(4), 988–995 (2013). https://doi.org/10.1016/j.indag.2012.11.002.

    Article  MathSciNet  MATH  Google Scholar 

  28. Szabó S., Sands A.D.: Factoring Groups into Subsets, Volume 257 of Lecture Notes in Pure and Applied Mathematics. Chapman and Hall/CRC, Boca Raton (2009). https://doi.org/10.1201/9781420090475.

  29. Tietäväinen A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24(1), 88–96 (1973). https://doi.org/10.1137/0124010.

    Article  MathSciNet  Google Scholar 

  30. Wasiljew J.L.: Über dicht gepackte nichtgruppen-codes. In: Probleme der Kybernetik, vol. 8, pp. 375–378. Akademie-Verlag (1965). Translated from Problemy Kibernetiki 8: 337–339 (1962).

  31. Zaremba S.K.: Covering problems concerning Abelian groups. J. Lond. Math. Soc. 27(2), 242–246 (1952). https://doi.org/10.1112/jlms/s1-27.2.242.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zinoviev V., Leontiev V.: The nonexistence of perfect codes over Galois fields. Probl. Control Inf. Theory 2(2), 123–132 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis S. Krotov.

Ethics declarations

Competing interests

The author has no competing interests to declare that are relevant to the content of this article.

Informed consent

For this type of study, informed consent is not required.

Additional information

Communicated by T. Etzion.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is funded by the Russian Science Foundation, Grant 22-11-00266.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krotov, D.S. Projective tilings and full-rank perfect codes. Des. Codes Cryptogr. 91, 3293–3303 (2023). https://doi.org/10.1007/s10623-023-01256-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01256-y

Keywords

Mathematics Subject Classification

Navigation