Skip to main content
Log in

LCD subspace codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A subspace code is a nonempty set of subspaces of a vector space \({\mathbb {F}}^n_q\). Linear codes with complementary duals, or LCD codes, are linear codes whose intersection with their duals is trivial. In this paper, we introduce a notion of LCD subspace codes. We show that the minimum distance decoding problem for an LCD subspace code reduces to a problem that is simpler than for a general subspace code. Further, we show that under some conditions equitable partitions of association schemes yield such LCD subspace codes and as an illustration of the method give some examples from distance-regular graphs. We also give constructions from mutually unbiased weighing matrices, that include constructions from mutually unbiased Hadamard matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Alahmadi A., Altassan A., AlKenani A., Çalkavur S., Shoaib H., Solé P.: A multisecret-sharing scheme based on LCD codes. Mathematics 8(2), 272 (2020).

    Article  Google Scholar 

  2. Araya M., Harada M., Saito K.: On the minimum weights of binary LCD codes and ternary LCD codes. Finite Fields Appl. 76, 101925 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartoli D., Riet A.-E., Storme L., Vandendriessche P.: Improvement to the sunflower bound for a class of equidistant constant dimension subspace codes. J. Geom. 112(1), 12 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  4. Best D., Kharaghani H.: Unbiased complex Hadamard matrices and bases. Cryptogr. Commun. 2, 199–209 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosma W., Cannon J.: Handbook of Magma Functions. Department of Mathematics, University of Sydney, Camperdown (1994).

    MATH  Google Scholar 

  6. Bouyuklieva S.: Optimal binary LCD codes. Des. Codes Cryptogr. 89, 2445–2461 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  7. Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer-Verlag, Berlin (1989).

    Book  MATH  Google Scholar 

  8. Cameron P.J., Seidel J.J.: Quadratic forms over GF(2). Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math 35, 1–8 (1973).

    MathSciNet  MATH  Google Scholar 

  9. Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  10. Carlet C., Mesnager S., Tang C., Qi Y.: Linear codes over \(F_q\) which are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64, 3010–3017 (2018).

    Article  MATH  Google Scholar 

  11. Crnković D., Egan R., Rodrigues B.G., Švob A.: LCD codes from weighing matrices. Appl. Algebra Eng. Commun. Comput. 32, 175–189 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  12. Crnković D., Egan R., Švob A.: Orbit matrices of Hadamard matrices and related codes. Discret. Math. 341, 1199–1209 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  13. Crnković D., Rukavina S., Švob A.: Self-orthogonal codes from equitable partitions of association schemes. J. Algebr. Comb. 55, 157–171 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  14. Greferath M., Pavčević M.O., Silberstein N., Vázquez-Castro M. (eds.): Network Coding and Subspace Designs. Signals and Communication Technology. Springer, Cham (2018).

    Google Scholar 

  15. Heinlein D., Kiermaier M., Kurz S., Wassermann A.: Tables of subspace codes. arXiv:1601.02864v2 (2017)

  16. Heinlein D., Honold T., Kiermaier M., Kurz S., Wassermann A.: Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6. Des. Codes Cryptogr. 87, 375–391 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  17. Hernandez Lucas L., Landjev I., Storme L., Vandendriessche P.: A stability result and a spectrum result on constant dimension codes. Linear Algebra Appl. 621, 193–213 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  18. Holzmann W.H., Kharaghani H., Orrick W.: On the real unbiased Hadamard matrices. In: Brualdi R.A., Hedayat S., Kharaghani H., Khosrovshahi G.B., Shahriari S. (eds.) Contemporary Mathematics, Combinatorics and Graphs, vol. 531, pp. 243–250. American Mathematical Society, Providence (2010).

    Chapter  Google Scholar 

  19. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  20. Kharaghani H.: Unbiased Hadamard matrices and bases. In: Crnković D., Tonchev V. (eds.) Information Security, Coding Theory and Related Combinatorics, NATO Science for Peace and Security Series—D: Information and Communication Security, vol. 29, pp. 312–325. IOS, Amsterdam (2011).

    Google Scholar 

  21. Kharaghani H., Sasani S., Suda S.: Mutually unbiased bush-type Hadamard matrices and association schemes. Electron. J. Combin. 22(3), P3.10 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. Kharaghani H., Tayfeh-Rezaie B.: A Hadamard matrix of order 428. J. Comb. Des. 13, 435–440 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. Kötter R., Kschischang F.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  24. Massey J.L.: Linear codes with complementary duals. Discret. Math. 106(107), 337–342 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  25. Sendrier N.: Linear codes with complementary duals meet the Gilbert–Varshamov bound. Discret. Math. 304, 345–347 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  26. Švob A.: LCD codes from equitable partitions of association schemes. Appl. Algebra Eng. Commun. Comput. (2023). https://doi.org/10.1007/s00200-021-00532-5.

    Article  Google Scholar 

  27. The GAP Group. GAP—Groups: Algorithms, and Programming, Version 4.8.4. http://www.gap-system.org (2016)

  28. van Dam E.: Three-class association schemes. J. Algebr. Comb. 10, 69–107 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang H., Cao X.: Further constructions of cyclic subspace codes. Cryptogr. Commun. 13, 245–262 (2021).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their helpful comments that improved the presentation of the paper.

Funding

This work has been fully supported by Croatian Science Foundation under the Project 5713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Švob.

Additional information

Communicated by V. D. Tonchev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crnković, D., Švob, A. LCD subspace codes. Des. Codes Cryptogr. 91, 3215–3226 (2023). https://doi.org/10.1007/s10623-023-01251-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01251-3

Keywords

Mathematics Subject Classification

Navigation