Skip to main content
Log in

New constant dimension subspace codes from block inserting constructions

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

A basic problem of the constant dimension subspace coding is to determine the maximal possible size Aq(n,d,k) of a set of k-dimensional subspaces in \(\mathbf {F}_{q}^{n}\) such that the subspace distance satisfies \(\text {dis}(U,V) =2k-2 \dim (U \cap V) \geq d\) for any two different subspaces U and V in this set. We propose two constructions of constant dimension subspace codes that can insert flexibly into the generalized parallel linkage construction. In our constructions matrix blocks from small constant dimension codes and rank metric codes play important roles. Through a well-arranged combination for the matrix blocks, more than 120 new constant dimension subspace codes of distance 4, 6, 8 better than previously best known codes are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This paper is a part of our preprint [16] posted before [10, 19].

  2. With the same notation l in Lemma 4.4 of [2], the construction is rewritten for the case of l = 2.

  3. The values of the column named “New” are the new lower bounds of CDCs from our constructions. The values of the column named “Old” are the new lower bounds of CDCs from [12].

    Table 1 New lower bounds of q = 2

References

  1. Chen, H., He, X., Weng, J., Xu, L.: New Constructions of Subspace Codes Using Subsets of MRD Codes in Several Blocks. IEEE Trans. Inf. Theory 66(9), 5317–5321 (2020). https://doi.org/10.1109/TIT.2020.2975776

    Article  MathSciNet  Google Scholar 

  2. Cossidente, A., Kurz, S., Marino, G., Pavese, F.: Combining subspace codes. arXiv:1911.03387 (2020)

  3. de la Cruz, J., Gorla, E., López, H.H., Ravagnani, A.: Weight distribution of rank-metric codes. Des. Codes Cryptogr. 86(1), 1–16 (2018). https://doi.org/10.1007/s10623-016-0325-1

    Article  MathSciNet  Google Scholar 

  4. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978)

    Article  MathSciNet  Google Scholar 

  5. Etzion, T., Silberstein, N.: Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 55(7), 2909–2919 (2009). https://doi.org/10.1109/TIT.2009.2021376

    Article  MathSciNet  Google Scholar 

  6. Etzion, T., Silberstein, N.: Codes and designs related to lifted mrd codes. IEEE Trans. Inf. Theory 59(2), 1004–1017 (2012). https://doi.org/10.1109/TIT.2012.2220119

    Article  MathSciNet  Google Scholar 

  7. Etzion, T., Vardy, A.: Error-correcting codes in projective space. IEEE Trans. Inf. Theory 57(2), 1165–1173 (2011). https://doi.org/10.1109/TIT.2010.2095232

    Article  MathSciNet  Google Scholar 

  8. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Peredachi Inf. 21(1), 3–16 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Gluesing-Luerssen, H., Troha, C.: Construction of subspace codes through linkage. Adv. Math. Commun 10(3). https://doi.org/10.3934/amc.2016023 (2016)

  10. He, X., Chen, Y., Zhang, Z., Zhou, K.: New construction for constant dimension subspace codes via a composite structure. IEEE Commun. Lett. 25(5), 1422–1426 (2021). https://doi.org/10.1109/LCOMM.2021.3052734

    Article  Google Scholar 

  11. Heinlein, D.: Generalized linkage construction for constant-dimension codes. IEEE Trans. Inf. Theory 67(2), 705–715 (2021). https://doi.org/10.1109/TIT.2020.3038272

    Article  MathSciNet  Google Scholar 

  12. Heinlein, D., Kiermaier, M., Kurz, S., Wassermann, A.: Tables of subspace codes. arXiv:1601.02864 (2016)

  13. Heinlein, D., Kurz, S.: Coset construction for subspace codes. IEEE Trans. Inf. Theory 63(12), 7651–7660 (2017). https://doi.org/10.1109/TIT.2017.2753822

    Article  MathSciNet  Google Scholar 

  14. Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008). https://doi.org/10.1109/TIT.2008.926449

    Article  MathSciNet  Google Scholar 

  15. Kurz, S.: Lifted codes and the multilevel construction for constant dimension codes. arXiv:2004.14241 (2020)

  16. Lao, H., Chen, H., Weng, J., Tan, X.: Parameter-controlled inserting constructions of constant dimension subspace codes. arXiv:2008.09944 (2020)

  17. Li, F.: Construction of constant dimension subspace codes by modifying linkage construction. IEEE Trans. Inf. Theory 66(5), 2760–2764 (2019). https://doi.org/10.1109/TIT.2019.2960343

    Article  MathSciNet  Google Scholar 

  18. Liu, S., Chang, Y., Feng, T.: Parallel multilevel constructions for constant dimension codes. IEEE Trans. Inf. Theory 66(11), 6884–6897 (2020). https://doi.org/10.1109/TIT.2020.3004315

    Article  MathSciNet  Google Scholar 

  19. Niu, Y., Yue, Q., Huang, D.: New constant dimension subspace codes from generalized inserting construction. IEEE Commun. Lett. 25(4), 1066–1069 (2021). https://doi.org/10.1109/LCOMM.2020.3046042

    Article  Google Scholar 

  20. Silberstein, N., Trautmann, A.L.: Subspace codes based on graph matchings, ferrers diagrams, and pending blocks. IEEE Trans. Inf. Theory 61(7), 3937–3953 (2015). https://doi.org/10.1109/tit.2015.2435743

    Article  MathSciNet  Google Scholar 

  21. Wang, H., Xing, C., Safavi-Naini, R.: Linear authentication codes: bounds and constructions. IEEE Trans. Inf. Theory 49(4), 866–872 (2003). https://doi.org/10.1109/TIT.2003.809567

    Article  MathSciNet  Google Scholar 

  22. Xu, L., Chen, H.: New Constant-Dimension Subspace Codes from Maximum Rank Distance Codes. IEEE Trans. Inf. Theory 64(9), 6315–6319 (2018). https://doi.org/10.1109/TIT.2018.2839596

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Hao Chen was supported by National Natural Science Foundation of China (NSFC) Grant 62032009. The research of Xiaoqing Tan was supported by NSFC Grant 61672014, National Cryptography Development Fund of China Grant MMJJ20180109, and Natural Science Foundation of Guangdong Province of China Grant 2019A1515011069. This research was supported by the Major Program of Guangdong Basic and Applied Research under Grant 2019030302008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A

Appendix: A

In [10], the authors proposed a construction that composes several CDCs in Theorem 4. However, the result is incorrect since the minimal distance of the CDCs in construction is not satisfied ≥ d under some conditions.

More specifically, the proof of dis(W3,W4) ≥ d in Theorem 4 is reduced to \(\dim (W_{3} + W_{4}) \geq k + \frac {d}{2}\), where W3 is a subspace in the CDC B1 and W4 is a subspace in the CDC B2. The authors claimed that \(\dim (W_{3} + W_{4}) = \dim (W_{3} + W_{4}^{\prime }) = 2k - \dim (W_{3} \cap W_{4}^{\prime }) \geq k + \frac {d}{2}\), where \(W_{4}^{\prime } = \text {rs} \left (\begin {array}{lllllll} I_{a_{2}} & | & M_{2} & | & \quad O_{2} & \\ O_{1} & |& M_{3} & | & O^{\prime } & | & M_{1}^{\prime } \end {array}\right )\), M3 is a matrix with restricted rank \(\leq a_{1} - \frac {d}{2}\) and \(M_{1}^{\prime }\) is a matrix with unknown rank.

The problem is that \(\dim (W_{3} + W_{4}^{\prime }) = 2k - \dim (W_{3} \cap W_{4}^{\prime })\) is not strictly proved in the paper. It is true if and only if \(\dim (W_{3}) = \dim (W_{4}^{\prime })=k\). However, the Theorem 4 only gives that \(\dim (W_{4}^{\prime }) = a_{2} + \text {rank} (M_{3} | O^{\prime } | M_{1}^{\prime }) \leq a_{2} + \text {rank} (M_{3}) + \text {rank} (M_{1}^{\prime }) \leq k - \frac {d}{2} + \text {rank} (M_{1}^{\prime })\). Thus \(\dim (W_{4}^{\prime })=k\) is not satisfied if \(\text {rank} (M_{3} | O^{\prime } | M_{1}^{\prime }) \neq a_{1}\).

We give a concrete example to show that the minimal distance is not satisfied in some cases. Using the same notations in Theorem 4 of [10], let n1 = n2 = 6,a1 = 4,a2 = 2,b1 = b2 = 2,d = 4,k = 6 and q = 2, then M1 ∈ (4, 2, 2)2 RMC, M2 ∈ (2, 4, 2)2 RMC and M3 ∈ (4, 4, 2)2 RRMC with rank ≤ 2. For simplification, we further assume M1 and M2 are zero matrices, and \(M_{3} = \left (\begin {array}{llll} {1} {0} {0} {0} \\ {0} {0} {0} {0} \\ {0} {0} {0} {0} \\ {0} {1} {0} {0} \end {array}\right )\). From the construction, we have

$$ \begin{array}{@{}rcl@{}} W_{3} &=& \text{rs} (G_{3})= \text{rs} \left( \begin{array}{llllllllllll} 1 0 0 0 0 0 | 0 0 1 0 0 0 \\ 0 1 0 0 0 0 | 0 0 0 0 0 0 \\ 0 0 1 0 0 0 | 0 0 0 0 0 0 \\ 0 0 0 1 0 0 | 0 0 0 1 0 0 \\ 0 0 0 0 0 0 | 1 0 0 0 0 0 \\ 0 0 0 0 0 0 | 0 1 0 0 0 0 \end{array}\right) \in B_{1}, \text{and} \\ W_{4} &=& \text{rs} (G_{4}) = \text{rs} \left( \begin{array}{llllllllllll} 1 0 0 0 0 0 | 0 0 0 0 0 0 \\ 0 1 0 0 0 0 | 0 0 0 0 0 0 \\ 0 0 1 0 0 0 | 1 0 0 0 0 0 \\ 0 0 0 0 0 0 | 0 1 0 0 0 0 \\ 0 0 0 0 0 0 | 0 0 1 0 0 0 \\ 0 0 0 1 0 0 | 0 0 0 1 0 0 \end{array}\right) \in B_{2}. \end{array} $$

Using the same proof technique, \( \dim (W_{3} + W_{4}) = \text {rank} \left (\begin {array}{ll} G_{3} \\ G_{4} \end {array}\right ) = \text {rank} \left (\begin {array}{ll} G_{3} \\ G_{4}^{\prime } \end {array}\right ) = \dim (W_{3} + W_{4}^{\prime }), \) where \(W_{4}^{\prime } = \text {rs} (G_{4}^{\prime }) = \text {rs} \left (\begin {array}{llllllllllll} 1 0 0 0 0 0 | 0 0 0 0 0 0 \\ 0 1 0 0 0 0 | 0 0 0 0 0 0 \\ 0 0 1 0 0 0 | {0} 0 0 0 0 0 \\ 0 0 0 0 0 0 | 0 {0} 0 0 0 0 \\ 0 0 0 0 0 0 | 0 0 1 0 0 0 \\ 0 0 0 1 0 0 | 0 0 0 1 0 0 \end {array}\right )\) and the first (second) green zero is the result of subtracting the 9th (10th) row from the 5th (6th) row of \(\left (\begin {array}{ll} G_{3} \\ G_{4} \end {array}\right )\).

It is easy to check that \(\dim (W_{3}) = \dim (W_{4}) = 6\). According to the Theorem 4, dis(W3,W4) ≥ 4 should be satisfied, which implies that \(\dim (W_{3} + W_{4})\) should be ≥ 8. However, \(\dim (W_{4}^{\prime }) = 5\) and

$$ \begin{array}{@{}rcl@{}} \dim(W_{3} + W_{4}) &=& \dim(W_{3} + W_{4}^{\prime}) \\ & =& \dim(W_{3}) + \dim(W_{4}^{\prime}) - \dim(W_{3} \cap W_{4}^{\prime}) \\ & =& 6 + 5 - 4 = 7. \end{array} $$

Thus \(\text {dis}(W_{3}, W_{4}) = 2\dim (W_{3} + W_{4}) - 2 \times 6 = 14 - 12 = 2\), which not meets the desired minimal distance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, H., Chen, H. & Tan, X. New constant dimension subspace codes from block inserting constructions. Cryptogr. Commun. 14, 87–99 (2022). https://doi.org/10.1007/s12095-021-00524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-021-00524-9

Keywords

Mathematics Subject Classification (2010)

Navigation