Skip to main content
Log in

New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The intersection \(\textbf{C}\cap \textbf{C}^{\perp _H}\) of a linear code \(\textbf{C} \subset \textbf{F}_{q^2}^n\) and its Hermitian dual \(\textbf{C}^{\perp _H}\) is called the Hermitian hull of this code. A linear code \(\textbf{C} \subset \textbf{F}_{q^2}^n\) satisfying \(\textbf{C} \subset \textbf{C}^{\perp _H}\) is called Hermitian self-orthogonal. Many Hermitian self-orthogonal codes were given for the construction of MDS quantum error correction codes (QECCs). In this paper we prove that for a nonnegative integer h satisfying \(0 \le h \le k\), a linear Hermitian self-orthogonal \([n, k]_{q^2}\) code is equivalent to a linear h-dimension Hermitian hull code. Therefore a lot of new MDS entanglement-assisted quantum error correction (EAQEC) codes can be constructed from previous known Hermitian self-orthogonal codes. Actually our method shows that previous constructed quantum MDS codes from Hermitian self-orthogonal codes can be transformed to MDS entanglement-assisted quantum codes with nonzero consumption parameter c directly. We prove that MDS EAQEC \([[n, k, d; c]]_q\) codes with nonzero c parameters and \(d\le \frac{n+2}{2}\) exist for arbitrary length n satisfying \(n \le q^2+1\). Moreover any QECC constructed from k-dimensional Hermitian self-orthogonal codes can be transformed to k different EAQEC codes. We also prove that MDS entanglement-assisted quantum codes exist for all lengths \(n\le q^2+1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allahmadi A., Alkenani A., Hijazi R., Muthana N., Özbudak F., Solé P.: New constructions of entanglement-assisted quantum codes. Cryptogr. Commun. 14, 15–27 (2022).

    MathSciNet  MATH  Google Scholar 

  2. Aly S.A., Klappenecker A., Sarvepalli P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007).

    MathSciNet  MATH  Google Scholar 

  3. Ball S.: On large subsets of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc. 14, 733–748 (2012).

    MATH  Google Scholar 

  4. Ball S.: Some constructions of quantum MDS codes. Des. Codes Cryptogr. 89, 811–821 (2021).

    MathSciNet  MATH  Google Scholar 

  5. Ball S., Vilar R.: Determining when a truncated generalised Reed–Solomon code is Hermitian self-orthogonal. IEEE Trans. Inf. Theory 68, 3796–3805 (2022).

    MathSciNet  MATH  Google Scholar 

  6. Ball S., Vilar R.: The geometry of Hermitian orthogonal codes. J. Geom. 113, 7 (2022).

    MathSciNet  MATH  Google Scholar 

  7. Ball S., Centelles A., Huber F.: Quantum error-correcting codes and their geometries. Annale de l’institut Henri Poincare (2022). https://doi.org/10.4171/AIHPD/160.

    Article  MATH  Google Scholar 

  8. Brun T.A., Devetak I., Hsieh M.-H.: Correcting quantum errors with entanglemnent. Science 304(5798), 436–439 (2006).

    MATH  Google Scholar 

  9. Calderbank A., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).

    MathSciNet  MATH  Google Scholar 

  10. Cao M.: MDS codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 67(12), 7964–7984 (2021).

    MathSciNet  MATH  Google Scholar 

  11. Chen H.: Some good quantum error-correcting codes from algebraic geometric codes. IEEE Trans. Inf. Theory 47(5), 2059–2061 (2001).

    MathSciNet  MATH  Google Scholar 

  12. Chen H.: On the hull-variation problem of equivalent linear codes. IEEE Trans. Inf. Theory (2023). https://doi.org/10.1109/TIT.2023.3234249.

    Article  MathSciNet  Google Scholar 

  13. Chen H., Xing C., Ling S.: Asymptotically good quantum codes exceeding the Ashikhmin–Litsyn–Tsafasman bound. IEEE Trans. Inf. Theory 47(5), 2055–2058 (2001).

    MATH  Google Scholar 

  14. Chen H., Xing C., Ling S.: Quantum codes from concatenated algebraic geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005).

    MathSciNet  MATH  Google Scholar 

  15. Chen B., Ling S., Zhang G.: Applications of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1483 (2015).

    MathSciNet  MATH  Google Scholar 

  16. Chen X., Zhu S., Jiang W., Luo G.: A new family of EAQMDS codes constructed from constacyclic codes. Des. Codes Cryptogr. 89, 2179–2193 (2021).

    MathSciNet  MATH  Google Scholar 

  17. Chen X., Zhu S., Jiang W.: Cyclic codes and some new entanglement-assisted quantum MDS codes. Des. Codes Cryptogr. 89, 2533–2551 (2021).

    MathSciNet  MATH  Google Scholar 

  18. Conway J.H., Sloane N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36, 1319–1333 (1990).

    MathSciNet  MATH  Google Scholar 

  19. Conway J.H., Pless V., Sloane N.J.A.: Self-dual codes over \(GF(3)\) and \(GF(4)\) of length not exceeding \(16\). IEEE Trans. Inf. Theory 25(3), 312–322 (1979).

    MATH  Google Scholar 

  20. Fan Y., Zhang L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84(3), 473–492 (2017).

    MathSciNet  MATH  Google Scholar 

  21. Fang W., Fu F., Li L., Zhu S.: Euclid and Hermitian hulls of MDS codes and their application to quantum codes. IEEE Trans. Inf. Theory 66(6), 3527–3537 (2020).

    MATH  Google Scholar 

  22. Fattal D., Cubitt T.S., Yamamoto Y., Bravyi S., Chuang I.L.: Entanglement in the stablizer formalism (2004). arXiv:quant-ph/04-6168

  23. Galindo C., Hernando F., Ruano D.: Entanglement-assisted quantum codes from RS codes and BCH codes with extension degree two. Quantum Inf. Process. 20, 158 (2016).

    MATH  Google Scholar 

  24. Gao Y., Yue Q., Huang X., Zeng J.: Hulls of generalized Reed–Solomon codes via Goppa codes and their applications to quantum codes. IEEE Trans. Inf. Theory 67(10), 6619–6626 (2021).

    MathSciNet  MATH  Google Scholar 

  25. Grassl M., Gulliver T.A.: On self-dual MDS codes. Proc. Int. Symp. Inf. Theory, pp. 1954–1957 (2008).

  26. Grassl M., Huber F., Winiter A.: Entropic proofs of Singleton bounds for quantum error-correcting codes. IEEE Trans. Inf. Theory 68(6), 3942–3950 (2021).

    MathSciNet  MATH  Google Scholar 

  27. Gulliver T.A., Kim J.-L., Lee Y.: New MDS or near MDS codes. IEEE Trans. Inf. Theory 54(9), 4354–4360 (2008).

    MathSciNet  MATH  Google Scholar 

  28. Guo G., Li R.: Hermitian self-dual GRS and entended GRS codes. IEEE Commun. Lett. 25(4), 1062–1065 (2021).

    Google Scholar 

  29. Guo G., Li R., Liu Y., Song H.: Duality of generalized twisted Reed–Solomon codes and Hermitian self-dual MDS and NMDS codes (2022). arXiv:2202.11457

  30. He X., Xu L., Chen H.: New \(q\)-ary quamtum MDS codes with distances bigger than \(\frac{q}{2}\). Quant. Inf. Process. 15, 2745–2758 (2016).

    MATH  Google Scholar 

  31. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    MATH  Google Scholar 

  32. Jin L., Xing C.: Euclid and Hermitian self-orthogonal algebraic geometric codes and their applications to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2012).

    MATH  Google Scholar 

  33. Jin L., Xing C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014).

    MathSciNet  MATH  Google Scholar 

  34. Kai X., Zhu S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013).

    MathSciNet  MATH  Google Scholar 

  35. Kai X., Zhu S., Li P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014).

    MathSciNet  MATH  Google Scholar 

  36. Klappenecker A., Sarvepalli P.K.: Clifford code constructions of operators quantum error correcting codes. IEEE Trans. Inf. Theory 54(12), 5760–5765 (2008).

    MathSciNet  MATH  Google Scholar 

  37. Koroglu M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 1–18 (2018).

    MathSciNet  Google Scholar 

  38. La Guardia G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011).

    MathSciNet  MATH  Google Scholar 

  39. Luo G., Cao X., Chen X.: MDS codes with hulls of arbitray dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019).

    MATH  Google Scholar 

  40. Luo G., Ezerman M.F., Grassl M., Ling S.: How much entanglement does a quantum code need? (2022). arXiv:2207.05647

  41. Luo G., Ezerman M.F., Ling S.: Entanglement-assisted and subsystem quantum codes: new propagation rule and construction (2022). arXiv:2206.09782

  42. Niu Y., Yue Q., Wu Y., Hu L.: Hermitian self-dual, MDS and generalized Reed–Solomon codes. IEEE Commun. Lett. 23(5), 781–784 (2019).

    Google Scholar 

  43. Pereira F.R.F., Pellikaan R., La Guardia G.G., Marcos F.: Entanglement-assisted quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 67(11), 7110–7120 (2021).

    MathSciNet  MATH  Google Scholar 

  44. Rains E.M., Sloane N.J.A.: Self-dual codes. In: Pless V., Huffman W.C. (eds.) Handbook of Coding Theory, pp. 177–294. Elsevier, Amsterdam (1998).

    Google Scholar 

  45. Sendrier N.: Finding the permutation between equivalent linear codes. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000).

    MATH  Google Scholar 

  46. Shor P.W.: Scheme for redcuing decoherence in quantum memory. Phys. Rev. A 52, R2493-2496 (1995).

    Google Scholar 

  47. Sok L.: Construction of optimal Hermitian self-dual codes from unitary matrices (2019). arXiv:1911.10456

  48. Sok L.: Explicit constructions of MDS self-dual codes. IEEE Trans. Inf. Theory 66(6), 3603–3615 (2020).

    MathSciNet  MATH  Google Scholar 

  49. Steane A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. 452, 2551–2577 (1996).

    MathSciNet  MATH  Google Scholar 

  50. van Lint J.H.: Introduction to the Coding Theory, GTM 86, Third and Expanded Springer, Berlin (1999).

    Google Scholar 

  51. Zhang A., Feng K.: A unified approach to construct MDS self-dual codes via Reed–Solomon code. IEEE Trans. Inf. Theory 66(6), 3650–3656 (2020).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is sincerely grateful to three reviewers and the handling editor for their comments and suggestions, which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Communicated by T. Feng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Hao Chen was supported by NSFC Grant 62032009.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H. New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes. Des. Codes Cryptogr. 91, 2665–2676 (2023). https://doi.org/10.1007/s10623-023-01232-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01232-6

Keywords

Mathematics Subject Classification

Navigation