Skip to main content
Log in

Several new families of MDS EAQECCs with much larger dimensions and related application to EACQCs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In 2006, Brun, Devetak and Hsieh developed the theory of entanglement-assisted quantum error-correcting codes (EAQECCs), which generalizes that of quantum stabilizer codes. The study of EAQECCs is currently a hot topic in coding theory and quantum information theory. Let \(q=p^{e}\) be a prime power and let \(\ell \) be an integer with \(0\le \ell \le e-1\). The \(\ell \)-Galois hulls of MDS codes are an effective tool for constructing MDS EAQECCs. In this paper, we construct twenty-two families of q-ary MDS codes with \(\ell \)-Galois hulls satisfying \(2(e-\ell )\mid e\), which are not covered by those available in Cao (Galois hulls of MDS codes and their quantum error correction, 2020. https://arxiv.org/abs/2002.12892v2, IEEE Trans Inf Theory 67(12):7964–7984, 2021) when \(\ell \ne \frac{e}{2}\). From these families of MDS codes with \(\ell \)-Galois hulls, we obtain twenty-two families of q-ary MDS EAQECCs. Compared with the MDS EAQECCs from Cao (Galois hulls of MDS codes and their quantum error correction, 2020. https://arxiv.org/abs/2002.12892v2, IEEE Trans Inf Theory 67(12):7964–7984, 2021), some of the MDS EAQECCs constructed in this paper have much larger dimensions. As an application, we give new families of p-ary entanglement-assisted concatenated quantum codes (EACQCs) by combining an arbitrary p-ary \([[n',e,d';c']]_{p}\) EAQECC with the q-ary MDS EAQECCs constructed in this paper. It turns out that the parameters of these EACQCs are very flexible, e.g., the possibility of the lengths of these EACQCs is far greater than the one of the lengths of these MDS EAQECCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this paper as no datasets were generated or analyzed during the current study.

References

  1. Brun, T.A., Devetak, I., Hsieh, M.-H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    ADS  MathSciNet  Google Scholar 

  2. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    MathSciNet  Google Scholar 

  3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098 (1996)

    ADS  Google Scholar 

  4. Cao, M.: Galois hulls of MDS codes and their quantum error correction. arXiv:2002.12892v2 (2020)

  5. Cao, M.: MDS codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 67(12), 7964–7984 (2021)

    MathSciNet  Google Scholar 

  6. Cao, M., Cui, J.: New stabilizer codes from the construction of dual-containing matrix-product codes. Finite Fields Appl. 63, 101643 (2020)

    MathSciNet  Google Scholar 

  7. Chen, H.: On the hull-variation problem of equivalent linear codes. IEEE Trans. Inf. Theory 69(5), 2911–2922 (2023)

    ADS  MathSciNet  Google Scholar 

  8. Chen, X., Zhu, S., Jiang, W., Luo, G.: A new family of EAQMDS codes constructed from constacyclic codes. Des. Codes Cryptogr. 89(9), 2179–2193 (2021)

    MathSciNet  Google Scholar 

  9. Devetak, I., Harrow, A.W., Winter, A.J.: A family of quantum protocols. Phys. Rev. Lett. 93(230504), 1–4 (2004)

    MathSciNet  Google Scholar 

  10. Devetak, I., Harrow, A.W., Winter, A.J.: A resource framework for quantum Shannon theory. IEEE Trans. Inf. Theory 54(10), 4587–4618 (2008)

    MathSciNet  Google Scholar 

  11. Fan, J., Li, J., Zhou, Y., Hsieh, M.-H., Poor, H.V.: Entanglement-assisted concatenated quantum codes. Proc. Nat. Acad. Sci. 119(24), 1–6 (2022)

    MathSciNet  Google Scholar 

  12. Fan, Y., Zhang, L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84(3), 473–492 (2017)

    MathSciNet  Google Scholar 

  13. Fang, W., Fu, F.-W.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65(12), 7840–7847 (2019)

    MathSciNet  Google Scholar 

  14. Fang, W., Fu, F.-W., Li, L., Zhu, S.: Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory 66(6), 3527–3537 (2020)

    MathSciNet  Google Scholar 

  15. Fang, X., Jin, R., Luo, J., Ma, W.: New Galois hulls of GRS codes and application to EAQECCs. Cryptogr. Commun. 14(1), 145–159 (2022)

    MathSciNet  Google Scholar 

  16. Feng, K., Xing, C.: A new construction of quantum error-correcting codes. Trans. Am. Math. Soc. 360(4), 2007–2019 (2008)

    MathSciNet  Google Scholar 

  17. Galindo, C., Hernando, F., Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process. 18(116), 1–18 (2019)

    MathSciNet  Google Scholar 

  18. Galindo, C., Hernando, F., Ruano, D.: New quantum codes from evaluation and matrix-product codes. Finite Fields Appl. 36, 98–120 (2015)

    MathSciNet  Google Scholar 

  19. Galindo, C., Hernando, F., Ruano, D.: Entanglement-assisted quantum error-correcting codes from RS codes and BCH codes with extension degree 2. Quantum Inf. Process. 20(158), 1–26 (2021)

    MathSciNet  Google Scholar 

  20. Gao, J., Zhang, Y., Liu, Y., Fu, F.-W.: New MDS EAQECCs derived from constacyclic codes over \({\mathbb{F} }_{q^{2}} +v{\mathbb{F} }_{q^{2}}\). Discrete Math. 346(9), 113513 (2023)

    Google Scholar 

  21. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862 (1996)

    ADS  MathSciNet  Google Scholar 

  22. Grassl, M.: Entanglement-assisted quantum communication beating the quantum Singleton bound. Phys. Rev. A 103(L020601), 1–5 (2021)

    MathSciNet  Google Scholar 

  23. Grassl, M., Beth, T., Pellizzari, T.: Codes for the quantum erasure channel. Phys. Rev. A 56(1), 33 (1997)

    ADS  MathSciNet  Google Scholar 

  24. Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(01), 55–64 (2004)

    Google Scholar 

  25. Grassl, M., Huber, F., Winter, A.: Entropic proofs of Singleton bounds for quantum error-correcting codes. IEEE Trans. Inf. Theory 68(6), 3942–3950 (2022)

    MathSciNet  Google Scholar 

  26. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)

    MathSciNet  Google Scholar 

  27. Guo, G., Li, R., Liu, Y., Wang, J.: Some construction of entanglement-assisted quantum MDS codes. Quantum Inf. Process. 19, 1–22 (2020)

    MathSciNet  Google Scholar 

  28. Hsieh, M.-H., Devetak, I., Brun, T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76(6), 062313 (2007)

    ADS  Google Scholar 

  29. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–2925 (2014)

    MathSciNet  Google Scholar 

  30. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)

    MathSciNet  Google Scholar 

  31. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900 (1997)

    ADS  MathSciNet  Google Scholar 

  32. La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60(3), 1528–1535 (2014)

    MathSciNet  Google Scholar 

  33. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77(1), 198 (1996)

    ADS  Google Scholar 

  34. Lai, C.Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59(6), 4020–4024 (2013)

    MathSciNet  Google Scholar 

  35. Li, Y., Zhu, S., Li, P.: On MDS codes with Galois hulls of arbitrary dimensions. Cryptogr. Commun. 15, 565–587 (2023)

    MathSciNet  Google Scholar 

  36. Liu, H., Pan, X.: Galois hulls of linear codes over finite fields. Des. Codes Cryptogr. 88(2), 241–255 (2020)

    MathSciNet  Google Scholar 

  37. Liu, J., Lin, L.: Galois hulls of special Goppa codes and related codes with application to EAQECCs. Finite Fields Appl. 88, 102183 (2023)

    MathSciNet  Google Scholar 

  38. Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from matrix-product codes. Quantum Inf. Process. 18(6), 1–15 (2019)

    ADS  MathSciNet  Google Scholar 

  39. Liu, X., Liu, H., Yu, L.: New EAQEC codes constructed from Galois LCD codes. Quantum Inf. Process. 19(1), 20 (2020)

    ADS  MathSciNet  Google Scholar 

  40. Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)

    MathSciNet  Google Scholar 

  41. Lu, L., Li, R., Guo, L., Ma, Y., Liu, Y.: Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf. Process. 17(3), 69 (2018)

    ADS  MathSciNet  Google Scholar 

  42. Luo, G., Cao, X., Chen, X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019)

    MathSciNet  Google Scholar 

  43. Pereira, F.R.F., Pellikaan, R., La Guardia, G.G., de Assis, F.M.: Entanglement-assisted quantum codes from algebraic geometry codes. IEEE Trans. Inf. Theory 67(11), 7110–7120 (2021)

    MathSciNet  Google Scholar 

  44. Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quantum Inf. Process. 18(71), 1–12 (2019)

    MathSciNet  Google Scholar 

  45. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    ADS  Google Scholar 

  46. Sok, L.: On linear codes with one-dimensional Euclidean hull and their applications to EAQECCs. IEEE Trans. Inf. Theory 68(7), 4329–4343 (2022)

    MathSciNet  Google Scholar 

  47. Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996)

    ADS  MathSciNet  Google Scholar 

  48. Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54(6), 4741 (1996)

    ADS  MathSciNet  Google Scholar 

  49. Verma, G.K., Agrawal, A., Sharma, R.K.: Existence and construction of LCD codes over finite fields. arXiv:2208.07708v2 (2022)

  50. Wang, G., Tang, C.: Application of GRS codes to some entanglement-assisted quantum MDS codes. Quantum Inf. Process. 21(3), 98 (2022)

    ADS  MathSciNet  Google Scholar 

  51. Wang, L., Zhu, S., Sun, Z.: Entanglement-assisted quantum MDS codes from cyclic codes. Quantum Inf. Process. 19, 1–18 (2020)

    ADS  MathSciNet  Google Scholar 

  52. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77(6), 064302 (2008)

    ADS  Google Scholar 

  53. Wilde, M.M., Brun, T.A.: Entanglement-assisted quantum convolutional coding. Phys. Rev. A 81(4), 042333 (2010)

    ADS  MathSciNet  Google Scholar 

  54. Wilde, M.M., Hsieh, M.-H., Babar, Z.: Entanglement-assisted quantum turbo codes. IEEE Trans. Inf. Theory 60(2), 1203–1222 (2014)

    MathSciNet  Google Scholar 

  55. Wu, Y., Li, C., Yang, S.: New Galois hulls of generalized Reed-Solomon codes. Finite Fields Appl. 83, 102084 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to sincerely thank the anonymous reviewers, editor, and Editor-in-Chief Yaakov S. Weinstein for their constructive comments and suggestions that greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Cao.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M. Several new families of MDS EAQECCs with much larger dimensions and related application to EACQCs. Quantum Inf Process 22, 447 (2023). https://doi.org/10.1007/s11128-023-04197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04197-6

Keywords

Mathematics Subject Classification

Navigation