Skip to main content
Log in

Ideal hierarchical secret sharing and lattice path matroids

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

By a fundamental result by Brickell and Davenport (J Cryptol 4:123–134, 1991), the access structures of ideal secret sharing schemes are matroid ports. Farràs and Padró (IEEE Trans Inf Theory 58(5):3273–3286, 2012) presented a characterization of ideal hierarchical access structures. In this paper, we provide a different characterization. Specifically, we show that an access structure is ideal and hierarchical if and only if it is a port of a lattice path matroid at some specific points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Taking a cue from the concept of Isbel’s desirability relation [30] in game theory.

References

  1. Ardila F.: The catalan matroid. J. Comb. Theory Ser. A 104(1), 49–62 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. Beimel A.: Secret-sharing schemes: a survey. In: Chee Y.M., Guo Z., Ling S., Shao F., Tang Y., Wang H., Xing C. (eds.) Coding and Cryptology, vol. 6639, pp. 11–46. Lecture Notes in Computer Science. Springer, Berlin (2011).

    Chapter  Google Scholar 

  3. Blakley G.R.: Safeguarding cryptographic keys. AFIPS Conf. Proc. 48, 313–317 (1979).

    Google Scholar 

  4. Bonin J., de Mier A.: Lattice path matroids: structural properties. Eur. J. Comb. 27(5), 701–738 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonin J., Giménez O.: Multi-path matroids. Comb. Probab. Comput. 16(2), 193–217 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonin J., de Mier A., Noy M.: Lattice path matroids: enumerative aspects and Tutte polynomials. J. Comb. Theory Ser. A 104(1), 63–94 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. Brickell E.: Some ideal secret sharing schemes. J. Comb. Math. Comb. Comput. 9, 105–113 (1989).

    MathSciNet  MATH  Google Scholar 

  8. Brickell E., Davenport D.: On the classification of ideal secret sharing schemes. J. Cryptol. 4, 123–134 (1991).

    Article  MATH  Google Scholar 

  9. Crapo H.: Single-element extensions of matroids. J. Res. Natl. Bureau Stand. B 69B, 55–65 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  10. Farràs O., Padró C.: Ideal hierarchical secret sharing schemes. IEEE Trans. Inf. Theory 58(5), 3273–3286 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. Farràs O., Martí-Farré J., Padró C.: Ideal multipartite secret sharing schemes. J. Cryptol. 25, 434–463 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. Gvozdeva T., Hameed A., Slinko A.: Weightedness and structural characterization of hierarchical simple games. Math. Soc. Sci. 65(3), 181–189 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. Hameed A., Slinko A.: A characterisation of ideal weighted secret sharing schemes. J. Math. Cryptol. 9(4), 227–244 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. Ito M., Saito A., Nishizeki T.: Secret sharing scheme realizing any access structure. Proc. IEEE Glob. 87, 99–102 (1987).

    Google Scholar 

  15. Karnin E.D., Greene J.W., Hellman M.E.: On secret sharing systems. IEEE Trans. Inf. Theory 29, 35–41 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  16. Klivans C.: Combinatorial properties of shifted complexes. Doctoral dissertation, Massachusetts Institute of Technology (2003).

  17. Lehman A.: A solution of the Shannon switching game. J. Soc. Ind. Appl. Math. 12, 687–725 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  18. Martí-Farré J., Padró C.: On secret sharing schemes, matroids and polymatroids. J. Math. Cryptol. 4, 95–120 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. Matúš F.: Matroid representations by partitions. Discret. Math. 203(1–3), 169–194 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  20. Oxley J.: Matroid Theory, 2. Oxford University Press, New York (2011).

    Book  MATH  Google Scholar 

  21. Oxley J., Prendergast K., Row D.: Matroids whose ground sets are domains of functions. J. Austral. Math. Soc. Ser. A 32, 380–387 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  22. Padró C., Sáez G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inf. Theory 46(7), 2596–2604 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  23. Padró C., Sáez G.: Correction to “Secret sharing schemes with bipartite access structure’’. IEEE Trans. Inf. Theory 50(6), 1373 (2004).

    Article  MATH  Google Scholar 

  24. Piff M.J., Welsh D.J.A.: On the vector representation of matroids. J. Lond. Math. Soc. 2, 284–288 (1970).

    Article  MathSciNet  Google Scholar 

  25. Seymour P.D.: On secret-sharing matroids. J. Comb. Theory Ser. B 56(1), 69–73 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  26. Shamir A.: How to share a secret. Commun. ACM 22, 612–613 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  27. Simonis J., Ashikhmin A.: Almost affine codes. Des. Codes Cryptogr. 14, 179–197 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  28. Stinson D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2(4), 357–390 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. Tassa T.: Hierarchical threshold secret sharing. J. Cryptol. 20, 237–264 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  30. Taylor A.D., Zwicker W.S.: Simple Games: Desirability Relations, Trading, Pseudoweightings. Princeton University Press, Princeton (1999).

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by a PhD scholarship from The University of Auckland. The author thanks Prof Arkadii Slinko for his advice and the reviewers for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbao Mo.

Additional information

Communicated by C. Padro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, S. Ideal hierarchical secret sharing and lattice path matroids. Des. Codes Cryptogr. 91, 1335–1349 (2023). https://doi.org/10.1007/s10623-022-01154-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01154-9

Keywords

Mathematics Subject Classification

Navigation