Skip to main content
Log in

The estimates of trigonometric sums and new bounds on a mean value, a sequence and a cryptographic function

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we discuss the properties of the derivative of a special function, and propose a general approach to estimating a class of trigonometric sums based on the derivative of the special function. Then we apply the approach to three trigonometric sums and get three new estimates. Using the estimate of the first trigonometric sum, we deduce new upper and lower bounds of the arithmetic mean value for a trigonometric sum of Vinogradov. Using the estimate of the second trigonometric sum, we derive a new upper bound on the imbalance properties of Linear Feedback Shift Register subsequences. We also deduce a new lower bound on the nonlinearity of the Carlet–Feng vectorial Boolean function with the estimate of the third trigonometric sum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Alzer H., Koumandos S.: On a trigonometric sum of Vinogradov. J. Number Theory 105, 251–261 (2004).

    MathSciNet  MATH  Google Scholar 

  2. Apostol T.M.: Introduction to Analytic Number Theory. Springer Science & Business Media, New York (1976).

    MATH  Google Scholar 

  3. Berndt B.C., Yeap B.P.: Explicit evaluations and reciprocity theorems for finite trigonometric sums. Adv. Appl. Math. 29, 358–385 (2002).

    MathSciNet  MATH  Google Scholar 

  4. Blagouchine I.V.: A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations. J. Number Theory 148, 537–592 (2015).

    MathSciNet  MATH  Google Scholar 

  5. Brandstätter N., Lange T., Winterhof A.: On the non-linearity and sparsity of Boolean functions related to the discrete logarithm in finite fields of characteristic two. In: International Workshop on Coding and Cryptography, pp. 135–143. Springer, New York (2005).

  6. Brandstätter N., Winterhof A.: Some notes on the two-prime generator of order 2. IEEE Trans. Inf. Theory 51, 3654–3657 (2005).

    MathSciNet  MATH  Google Scholar 

  7. Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021).

    MATH  Google Scholar 

  8. Carlet C., Feng K.: An infinite class of balanced functions with optimal algebraic immunity, good immunity to fast algebraic attacks and good nonlinearity. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 425-440. Springer, New York (2008).

  9. Carlet C., Feng K.: An infinite class of balanced vectorial Boolean functions with optimum algebraic immunity and good nonlinearity. In: International Conference on Coding and Cryptology, pp. 1–11. Springer, New York (2009).

  10. Chalk J.: The number of solutions of congruences in incomplete residue systems. Can. J. Math. 15, 291–296 (1963).

    MathSciNet  MATH  Google Scholar 

  11. Chalk J., Williams K.: The distribution of solutions of congruences. Mathematika 12, 176–192 (1965).

    MathSciNet  MATH  Google Scholar 

  12. Cochrane T.: On a trigonometric inequality of Vinogradov. J. Number Theory 27, 9–16 (1987).

    MathSciNet  MATH  Google Scholar 

  13. Cochrane T., Peral J.: An asymptotic formula for a trigonometric sum of Vinogradov. J. Number Theory 91, 1–19 (2001).

    MathSciNet  MATH  Google Scholar 

  14. Dong D., Qu L., Fu S., Li C.: New constructions of vectorial Boolean functions with good cryptographic properties. Int. J. Found. Comput. Sci. 23, 749–760 (2012).

    MathSciNet  MATH  Google Scholar 

  15. Feng K., Liao Q., Yang J.: Maximal values of generalized algebraic immunity. Des. Codes Cryptogr. 50, 243–252 (2009).

    MathSciNet  MATH  Google Scholar 

  16. Feng K., Yang J.: Vectorial Boolean functions with good cryptographic properties. Int. J. Found. Comput. Sci. 22, 1271–1282 (2011).

    MathSciNet  MATH  Google Scholar 

  17. Gu T., Klapper A.: Distribution properties of half-l-sequence. In: International Conference on Sequences and Their Applications, pp. 234–245. Springer, New York (2014).

  18. Hakala R.M., Nyberg K.: On the nonlinearity of discrete logarithm in \({\mathbb{F}}_{2}^{n}\). In: International Conference on Sequences and Their Applications, pp. 333–345. Springer, New York(2010).

  19. Hollmann H.: Design of test sequences for VLSI self-testing using LFSR. IEEE Trans. Inf. Theory 36, 386–392 (1990).

    MATH  Google Scholar 

  20. Hu H., Hu L., Feng D.: On a class of pseudorandom sequences from elliptic curves over finite fields. IEEE Trans. Inf. Theory 53, 2598–2605 (2007).

    MathSciNet  MATH  Google Scholar 

  21. Kamlovskii O.V.: Frequency characteristics of coordinate sequences of linear recurrences over Galois rings. Izvestiya Math. 77, 1130 (2013).

    MathSciNet  MATH  Google Scholar 

  22. Krishnaswamy S., Pillai H.K.: On the number of linear feedback shift registers with a special structure. IEEE Trans. Inf. Theory 58, 1783–1790 (2011).

    MathSciNet  MATH  Google Scholar 

  23. Li J., Carlet C., Zeng X., Li C., Hu L., Shan J.: Two constructions of balanced Boolean functions with optimal algebraic immunity, high nonlinearity and good behavior against fast algebraic attacks. Des. Codes Cryptogr. 76, 279–305 (2015).

    MathSciNet  MATH  Google Scholar 

  24. Limniotis K., Kolokotronis N.: Boolean functions with maximum algebraic immunity: further extensions of the Carlet-Feng construction. Des. Codes Crypt. 86, 1685–1706 (2018).

    MathSciNet  MATH  Google Scholar 

  25. Liu H.: Large families of pseudorandom binary lattices by using the multiplicative inverse modulo p. Int. J. Number Theory 15, 527–546 (2019).

    MathSciNet  MATH  Google Scholar 

  26. Lou Y., Han H., Tang C., Wu Z., Xu M.: Constructing vectorial Boolean functions with high algebraic immunity based on group decomposition. Int. J. Comput. Math. 92, 451–462 (2015).

    MathSciNet  MATH  Google Scholar 

  27. Majic M.: Electrostatic shape energy differences of one-dimensional line charges. Am. J. Phys. 90, 682–687 (2022).

    Google Scholar 

  28. Niederreiter H.: On the cycle structure of linear recurring sequences. Math. Scand. 38, 53–77 (1976).

    MathSciNet  MATH  Google Scholar 

  29. Niederreiter H., Winterhof A.: On the distribution of some new explicit nonlinear congruential pseudorandom numbers. In: International Conference on Sequences and Their Applications, pp. 266-274. Springer, New York (2004).

  30. Nyberg K.: Correlation theorems in cryptanalysis. Discret. Appl. Math. 111, 177–188 (2001).

    MathSciNet  MATH  Google Scholar 

  31. Peral J.: On a sum of Vinogradov. Colloq. Math. 1, 225–233 (1990).

    MathSciNet  MATH  Google Scholar 

  32. Qureshi M., Porwal S., Ahamad D., Quraishi K.A.: Successive differentiations of tangent, cotangent, secant, cosecant functions and related hyperbolic functions (A hypergeometric approach). Int. J. Math. Trends Technol. 65, 352–367 (2019).

    Google Scholar 

  33. Rademacher H.: Topics in Analytic Number Theory, vol. 169. Springer Science & Business Media, New York (2012).

    MATH  Google Scholar 

  34. Rizomiliotis P.: On the resistance of Boolean functions against algebraic attacks using univariate polynomial representation. IEEE Trans. Inf. Theory 56, 4014–4024 (2010).

    MathSciNet  MATH  Google Scholar 

  35. Shparlinski I.E., Winterhof A.: Constructions of approximately mutually unbiased bases. In Latin American Symposium on Theoretical Informatics, pp. 793–799. Springer, New York (2006).

  36. Smith R.: The distribution of rational points on hypersurfaces defined over a finite field. Mathematika 17, 328–332 (1970).

    MathSciNet  MATH  Google Scholar 

  37. Spackman K.W.: On the number and distribution of simultaneous solutions to diagonal congruences. Can. J. Math. 33, 421–436 (1981).

    MathSciNet  MATH  Google Scholar 

  38. Tang D., Carlet C., Tang X.: Highly nonlinear Boolean functions with optimal algebraic immunity and good behavior against fast algebraic attacks. IEEE Trans. Inf. Theory 59, 653–664 (2013).

    MathSciNet  MATH  Google Scholar 

  39. Tang D., Carlet C., Tang X., Zhou Z.: Construction of highly nonlinear 1-resilient Boolean functions with optimal algebraic immunity and provably high fast algebraic immunity. IEEE Trans. Inf. Theory 63, 6113–6125 (2017).

    MathSciNet  MATH  Google Scholar 

  40. Tibouchi M., Kim T.: Improved elliptic curve hashing and point representation. Des. Codes Cryptogr. 82, 161–177 (2017).

    MathSciNet  MATH  Google Scholar 

  41. Vasin A.R.: Bounds on the discrepancy of linear recurring sequences over galois rings. Discret. Math. Appl. 30, 129–135 (2020).

    MATH  Google Scholar 

  42. Vinogradov I.M.: Elements of Number Theory. Courier Dover Publications, New York (1954).

    MATH  Google Scholar 

  43. Wang Q., Peng J., Kan H., Xue X.: Constructions of cryptographically significant Boolean functions using primitive polynomials. IEEE Trans. Inf. Theory 56, 3048–3053 (2010).

    MathSciNet  MATH  Google Scholar 

  44. Wang Q., Stănică P.: A trigonometric sum sharp estimate and new bounds on the nonlinearity of some cryptographic Boolean functions. Des. Codes Cryptogr. 87, 1749–1763 (2019).

    MathSciNet  MATH  Google Scholar 

  45. Wang Q., Tan C.H., New bounds on the imbalance of a half-l-sequence. In: IEEE International Symposium on Information Theory (ISIT), vol. 2015, pp. 2688–2691. IEEE (2015).

  46. Wang Q., Tan C.H.: Proof of a conjecture and a bound on the imbalance properties of LFSR subsequences. Discret. Appl. Math. 211, 217–221 (2016).

    MathSciNet  MATH  Google Scholar 

  47. Watson G.: XVI. The sum of a series of cosecants. Lond. Edinb. Dublin Philosoph. Mag. J. Sci. 31, 111–118 (1916).

    MATH  Google Scholar 

  48. Yu K.: On a trigonometric inequality of Vinogradov. J. Number Theory 49, 287–294 (1994).

    MathSciNet  MATH  Google Scholar 

  49. Zeng X., Carlet C., Shan J., Hu L.: More balanced Boolean functions with optimal algebraic immunity and good nonlinearity and resistance to fast algebraic attacks. IEEE Trans. Inf. Theory 57, 6310–6320 (2011).

    MathSciNet  MATH  Google Scholar 

  50. Zheng Q., Lin D., Qi W.: Distribution properties of binary sequences derived from primitive sequences modulo square-free odd integers. In: International Conference on Information Security and Cryptology, pp. 568–585. Springer, New York (2018).

Download references

Acknowledgements

The authors would like to thank Dr. Ziran Tu for his valuable suggestions. The authors also thank the anonymous referees whose comments significantly improved the quality of the paper. This work was supported in part by the Open Foundation of Hubei Key Laboratory of Applied Mathematics (Hubei University) (Grant No. HBAM202101), in part by the National Natural Science Foundation of China (Grant No. 32061123007, 61902285), in part by the Natural Science Foundation of Hubei Province (Grant No. 2019CFB099), in part by and the Fundamental Research Funds for the Central Universities (Program No. 2662018QD043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyong Zeng.

Additional information

Communicated by C. Carlet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Lemma 2

Clearly, we have \(\varphi _{k}^{(1)}(t)=\frac{1}{2} h\left( \frac{\pi (k+1)}{M}\right) -\frac{1}{2} h\left( \frac{\pi (k+1)}{M}+t\right) +\frac{t}{2} h^{(1)}\left( \frac{\pi (k+1)}{M}+t\right) \) where \( 0\le t\le \frac{\pi }{M} \). Moreover,

$$\begin{aligned} 2\varphi _{k}^{(2)}(t)=th^{(2)}\left( \frac{\pi (k+1)}{M}+t\right) \left( -1\le k\le {M-2}, 0\le t\le \frac{\pi }{M}\right) . \end{aligned}$$

Case 1: M is odd.

When \( -1\le k\le \frac{M-1}{2}-2 \), since \(0\le \frac{\pi (k+1)}{M} \le \frac{\pi (k+1)}{M}+t \le \frac{\pi (k+1)}{M}+\frac{\pi }{M}\le \frac{(M-1)\pi }{2 M} < \frac{\pi }{2}\), we have

$$\begin{aligned} th^{(2)}\left( \frac{\pi (k+1)}{M}\right) \le 2\varphi _{k}^{(2)}(t)\le th^{(2)}\left( \frac{\pi (k+1)}{M}+\frac{\pi }{M}\right) \end{aligned}$$

from Theorem 1(3). Integrating twice and considering that \( \varphi _{k}(0)=\varphi _{k}^{(1)}(0)=0 \), we have

$$\begin{aligned} t^3h^{(2)}\left( \frac{\pi (k+1)}{M}\right) \le 12\varphi _{k}(t)\le t^3h^{(2)}\left( \frac{(k+2)\pi }{M}\right) . \end{aligned}$$

Therefore,

$$\begin{aligned}{} & {} \frac{\pi ^3}{12M^3}h^{(2)}\left( \frac{\pi (k+1)}{M}\right) \le \varphi _{k}\left( \frac{\pi }{M}\right) \nonumber \\{} & {} \quad \le \frac{\pi ^3}{12M^3}h^{(2)}\left( \frac{(k+2)\pi }{M}\right) \left( -1\le k\le \frac{M-1}{2}-2\right) . \end{aligned}$$
(29)

When \( k= \frac{M-1}{2} -1\), since \(\frac{(M-1)\pi }{2 M} = \frac{\pi (k+1)}{M} \le \frac{\pi (k+1)}{M}+t \le \frac{\pi (k+1)}{M}+\frac{\pi }{M} = \frac{(M+1)\pi }{2 M} \), we have

$$\begin{aligned} th^{(2)}\left( \frac{(M-1)\pi }{2 M}\right) \le 2\varphi _{\frac{M-1}{2}-1}^{(2)}(t)\le th^{(2)}\left( \frac{\pi }{2}\right) \end{aligned}$$

from Theorem 1(3). Integrating twice and considering that \( \varphi _{k}(0)=\varphi _{k}^{(1)}(0)=0 \), we have

$$\begin{aligned} t^3h^{(2)}\left( \frac{(M-1)\pi }{2 M}\right) \le 12\varphi _{\frac{M-1}{2}-1}(t)\le t^3h^{(2)}\left( \frac{\pi }{2}\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{\pi ^3}{12M^3}h^{(2)}\left( \frac{(M-1)\pi }{2 M}\right) \le \varphi _{\frac{M-1}{2}-1}\left( \frac{\pi }{M}\right) \le \frac{\pi ^3}{12M^3}h^{(2)}\left( \frac{\pi }{2}\right) . \end{aligned}$$
(30)

When \( \frac{M-1}{2}\le k\le {M-2} \), since \(\frac{\pi }{2} \le \frac{(M+1)\pi }{2M}\le \frac{\pi (k+1)}{M} \le \frac{\pi (k+1)}{M}+t \le \frac{\pi (k+1)}{M}+\frac{\pi }{M} \le \pi \), we have

$$\begin{aligned} th^{(2)}\left( \frac{\pi (k+2)}{M}\right) \le 2\varphi _{k}^{(2)}(t)\le th^{(2)}\left( \frac{\pi (k+1)}{M}\right) \end{aligned}$$

from Theorem 1(3). Integrating twice and considering that \( \varphi _{k}(0)=\varphi _{k}^{(1)}(0)=0 \), we have

$$\begin{aligned} t^3h^{(2)}\left( \frac{\pi (k+2)}{M}\right) \le 12\varphi _{k}(t)\le t^3h^{(2)}\left( \frac{\pi (k+1)}{M}\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{\pi ^3}{12M^3}h^{(2)}\left( \frac{\pi (k+2)}{M}\right) \le \varphi _{k}\left( \frac{\pi }{M}\right) \le \frac{\pi ^3}{12M^3}h^{(2)}\left( \frac{\pi (k+1)}{M}\right) \left( \frac{M-1}{2}\le k\le M-2\right) .\nonumber \\ \end{aligned}$$
(31)

From (29) to (31), we have

$$\begin{aligned}&\frac{\pi ^3}{12M^3}\left( \sum _{k=-1}^{\frac{M-3}{2}}h^{(2)}\left( \frac{\pi (k+1)}{M}\right) +\sum _{k=\frac{M-1}{2}}^{M-2}h^{(2)}\left( \frac{\pi (k+2)}{M}\right) \right) \nonumber \\&\le \sum _{k=-1}^{M-2}\varphi _{k}\left( \frac{\pi }{M}\right) \le \frac{\pi ^3}{12M^3}\left( \sum _{k=-1}^{\frac{M-5}{2}}h^{(2)}\left( \frac{\pi (k+2)}{M}\right) +h^{(2)}\left( \frac{\pi }{2}\right) +\sum _{k=\frac{M-1}{2}}^{M-2}h^{(2)}\left( \frac{\pi (k+1)}{M}\right) \right) . \end{aligned}$$
(32)

From Theorem 1(1), we have

$$\begin{aligned} \sum _{k=-1}^{\frac{M-3}{2}} h^{(2)}\left( \frac{\pi (k+1)}{M}\right) +\sum _{k=\frac{M-1}{2}}^{M-2} h^{(2)}\left( \frac{\pi (k+2)}{M}\right) =2 \sum _{k=0}^{\frac{M-1}{2}} h^{(2)}\left( \frac{k \pi }{M}\right) -h^{(2)}\left( \frac{(M-1) \pi }{2 M}\right) . \end{aligned}$$

Using the comparison of a series and the Riemann integral, we have

$$\begin{aligned} \sum _{k=0}^{\frac{M-1}{2}}\left( -h^{(2)}\left( \frac{k\pi }{M}\right) \right) \frac{\pi }{M}-\left( -h^{(2)}(0)\right) \frac{\pi }{M}+\left( -h^{(2)}\left( \frac{\pi }{2}\right) \right) \frac{\pi }{2M}<\int _{0}^{\frac{\pi }{2}}\left( -h^{(2)}(x)\right) d x, \end{aligned}$$

then

$$\begin{aligned} \sum _{k=0}^{\frac{M-1}{2}} h^{(2)}\left( \frac{k\pi }{M}\right)&>\frac{M}{\pi } \int _{0}^{\frac{\pi }{2}} h^{(2)}(x) d x+h^{(2)}(0)-\frac{1}{2}h^{(2)}\left( \frac{\pi }{2}\right) \nonumber \\&=\frac{M}{\pi }\left( \frac{1}{\pi ^{2}}-\frac{1}{6}\right) -\frac{1}{2}+\frac{14}{\pi ^{3}}. \end{aligned}$$
(33)

So, we have

$$\begin{aligned} 2\sum _{k=0}^{\frac{M-1}{2}} h^{(2)}\left( \frac{k\pi }{M}\right) -h^{(2)}\left( \frac{(M-1) \pi }{2 M}\right)&>2\sum _{k=0}^{\frac{M-1}{2}} h^{(2)}\left( \frac{k\pi }{M}\right) -h^{(2)}\left( \frac{\pi }{2}\right) \nonumber \\&>\frac{2M}{\pi }\left( \frac{1}{\pi ^{2}}-\frac{1}{6}\right) -2+\frac{60}{\pi ^{3}} \end{aligned}$$
(34)

from (33) and Theorem 1(3). Similarly, we have

$$\begin{aligned} \sum _{k=-1}^{\frac{M-5}{2}}h^{(2)}\left( \frac{\pi (k+2)}{M}\right) +h^{(2)}\left( \frac{\pi }{2}\right) +\sum _{k=\frac{M-1}{2}}^{M-2} h^{(2)}\left( \frac{\pi (k+1)}{M}\right) <\frac{2 M}{\pi }\left( \frac{1}{\pi ^{2}}-\frac{1}{6}\right) +2-\frac{60}{\pi ^{3}}. \nonumber \\ \end{aligned}$$
(35)

Therefore, we can get

$$\begin{aligned} \frac{\pi ^{3}}{6 M^{3}}\left( \frac{M}{\pi }\left( \frac{1}{\pi ^{2}}-\frac{1}{6}\right) -1+\frac{30}{\pi ^{3}}\right)<\sum _{k=-1}^{M-2}\varphi _{k}\left( \frac{\pi }{M}\right) <\frac{\pi ^{3}}{6M^{3}}\left( \frac{M}{\pi }\left( \frac{1}{\pi ^{2}}-\frac{1}{6}\right) +1-\frac{30}{\pi ^{3}}\right) \end{aligned}$$

from (32), (34) and (35), where \(M\ge 2\) is odd.

Case 2: M is even.

In this case, similarly as above, we have

$$\begin{aligned} \frac{\pi ^{3}}{6 M^{3}}\left( \frac{M}{\pi }\left( \frac{1}{\pi ^{2}}-\frac{1}{6}\right) -1+\frac{30}{\pi ^{3}}\right)<\sum _{k=-1}^{M-2}\varphi _{k}\left( \frac{\pi }{M}\right) <\frac{\pi ^{3}}{6M^{3}}\left( \frac{M}{\pi }\left( \frac{1}{\pi ^{2}}-\frac{1}{6}\right) +1-\frac{30}{\pi ^{3}}\right) , \end{aligned}$$

where \(M\ge 2\) is even. The proof is completed. \(\square \)

Appendix B

Proof of Lemma 6

Let \(F(t)=t h(t)-\int _{0}^{t} h(x) d x\left( 0 \le t \le \frac{\pi }{M}\right) \). It is easy to see that \( F(0)=0 \) and \( F^{(1)}(t)=th^{(1)}(t) \), and we know that \( h^{(1)}(t) \) is strictly monotonically decreasing in \( [0,\pi ] \) from Theorem 1(3), so

$$\begin{aligned} \frac{t^2}{2}h^{(1)}\left( \frac{\pi }{M}\right) \le F(t)\le \frac{t^2}{2}h^{(1)}(0), \end{aligned}$$

Moreover,

$$\begin{aligned} \frac{\pi ^2}{2M^2}h^{(1)}\left( \frac{\pi }{M}\right) \le F\left( \frac{\pi }{M}\right) \le \frac{\pi ^2}{2M^2}h^{(1)}(0)=\frac{\pi ^2}{2M^2}\left( \frac{1}{6}-\frac{1}{\pi ^{2}}\right) . \end{aligned}$$

Clearly,

$$\begin{aligned} h^{(1)}\left( \frac{\pi }{M}\right) -h^{(1)}\left( 0\right) =\int _{0}^{\frac{\pi }{M}} h^{(2)}(x) d x. \end{aligned}$$

Using the comparison of a series and the Riemann integral, we have

$$\begin{aligned} \int _{0}^{\frac{\pi }{M}}\left( -h^{(2)}(x)\right) d x<\frac{\pi }{M}\left( -h^{(2)}(0)\right) . \end{aligned}$$

Then

$$\begin{aligned} h^{(1)}\left( \frac{\pi }{M}\right) >h^{(1)}\left( 0\right) +\frac{\pi }{M}h^{(2)}(0). \end{aligned}$$

Moreover,

$$\begin{aligned} \frac{1}{2}\left( \frac{\pi }{M}\right) ^{2}\left( h^{(1)}(0)+\frac{\pi }{M}h^{(2)}(0)\right) <F\left( \frac{\pi }{M}\right) \le \frac{1}{2}\left( \frac{\pi }{M}\right) ^2h^{(1)}\left( 0\right) . \end{aligned}$$

Appendix C

Proof of Lemma 9

let \(F(t)=t h\left( \frac{\pi }{2}+t\right) -\int _{\frac{\pi }{2}}^{\frac{\pi }{2}+t} h(x) d x\left( 0 \le t \le \frac{\pi }{ 2M}\right) \). It is easy to see that \( F(0)=0 \) and \( F^{(1)}(t)=th^{(1)}(\frac{\pi }{2}+t) \), and we know that \( h^{(1)}(t) \) is strictly monotonically decreasing in \( [0,\pi ] \) from Theorem 1(3), so

$$\begin{aligned} \frac{t^2}{2}h^{(1)}\left( \frac{\pi }{2}+\frac{\pi }{2M}\right) \le F(t)\le \frac{t^2}{2}h^{(1)}\left( \frac{\pi }{2}\right) . \end{aligned}$$

Moreover,

$$\begin{aligned} \frac{1}{2}\left( \frac{\pi }{2M}\right) ^2h^{(1)}\left( \frac{\pi }{2}+\frac{\pi }{2M}\right) \le F\left( \frac{\pi }{2M}\right) \le \frac{1}{2}\left( \frac{\pi }{2M}\right) ^2h^{(1)}\left( \frac{\pi }{2}\right) . \end{aligned}$$

Clearly,

$$\begin{aligned} h^{(1)}\left( \frac{\pi }{2}+\frac{\pi }{2M}\right) -h^{(1)}\left( \frac{\pi }{2}\right) =\int _{\frac{\pi }{2}}^{\frac{\pi }{2}+\frac{\pi }{2M}} h^{(2)}(x) d x. \end{aligned}$$

Using the comparison of a series and the Riemann integral, we have

$$\begin{aligned} \int _{\frac{\pi }{2}}^{\frac{\pi }{2}+\frac{\pi }{2M}}\left( -h^{(2)}(x)\right) d x<\frac{\pi }{2M}\left( -h^{(2)}\left( \frac{\pi }{2}+\frac{\pi }{2M}\right) \right) . \end{aligned}$$

From Theorem 1(3), then

$$\begin{aligned} \int _{\frac{\pi }{2}}^{\frac{\pi }{2}+\frac{\pi }{2M}}h^{(2)}(x) d x>\frac{\pi }{2M}h^{(2)}\left( \frac{\pi }{2}+\frac{\pi }{2M}\right) \ge \frac{\pi }{2M}h^{(2)}\left( \frac{\pi }{2}+\frac{\pi }{2\times 3}\right) . \end{aligned}$$

Clearly, \(h^{(1)}\left( \frac{\pi }{2}\right) =0\) and \(h^{(2)}\left( \frac{2\pi }{3}\right) =\frac{10 \sqrt{3}}{9}-\frac{243}{4 \pi ^{3}}\). Then we get

$$\begin{aligned} \frac{\pi ^3}{16M^3}\left( \frac{10 \sqrt{3}}{9}-\frac{243}{4 \pi ^{3}}\right) < \frac{\pi }{2M} h\left( \frac{\pi }{2}+\frac{\pi }{2M}\right) -\int _{\frac{\pi }{2}}^{\frac{\pi }{2}+\frac{\pi }{2M}} h(x) d x\le 0. \end{aligned}$$

\(\square \)

Proof of Proposition 1

According to Theorem 1(3), we get

$$\begin{aligned}&h^{(2)}\left( 0\right) t=\int _{0}^{t} h^{(2)}\left( 0\right) d x\le h^{(1)}\left( t\right) -h^{(1)}\left( 0\right) \\&\quad =\int _{0}^{t} h^{(2)}\left( x\right) d x \le \int _{0}^{t} h^{(2)}\left( \frac{\pi }{M}\right) d x=h^{(2)}\left( \frac{\pi }{M}\right) t, \end{aligned}$$

where \( 0\le t\le \frac{\pi }{M} \). Moreover,

$$\begin{aligned} h^{(1)}\left( 0\right) +h^{(2)}\left( 0\right) t \le h^{(1)}\left( t\right) \le h^{(1)}\left( 0\right) +h^{(2)}\left( \frac{\pi }{M}\right) t. \end{aligned}$$

Integral together, we have

$$\begin{aligned} \int _{0}^{\frac{\pi }{M}}\left( h^{(1)}\left( 0\right) +h^{(2)}\left( 0\right) t\right) d t \le \int _{0}^{\frac{\pi }{M}} h^{(1)}\left( t\right) d t \le \int _{0}^{\frac{\pi }{M}}\left( h^{(1)}\left( 0\right) +h^{(2)}\left( \frac{\pi }{M}\right) t\right) d t. \end{aligned}$$

Then

$$\begin{aligned} h^{(1)}\left( 0\right) \frac{\pi }{M}+\frac{1}{2}h^{(2)}\left( 0\right) \left( \frac{\pi }{M}\right) ^2\le h\left( \frac{\pi }{M}\right) -h\left( 0\right)&\le h^{(1)}\left( 0\right) \frac{\pi }{M}+\frac{1}{2}h^{(2)}\left( \frac{\pi }{M}\right) \left( \frac{\pi }{M}\right) ^2\\&\le h^{(1)}\left( 0\right) \frac{\pi }{M}+\frac{1}{2}h^{(2)}\left( \frac{\pi }{2}\right) \left( \frac{\pi }{M}\right) ^2. \end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Y., Zeng, X., Zhang, S. et al. The estimates of trigonometric sums and new bounds on a mean value, a sequence and a cryptographic function. Des. Codes Cryptogr. 91, 921–949 (2023). https://doi.org/10.1007/s10623-022-01140-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01140-1

Keywords

Mathematics Subject Classification

Navigation